Back to Search
Start Over
The Genomic Impact of Gene Retrocopies: What Have We Learned from Comparative Genomics, Population Genomics, and Transcriptomic Analyses?
- Source :
-
Genome biology and evolution [Genome Biol Evol] 2017 Jun 01; Vol. 9 (6), pp. 1351-1373. - Publication Year :
- 2017
-
Abstract
- Gene duplication is a major driver of organismal evolution. Gene retroposition is a mechanism of gene duplication whereby a gene's transcript is used as a template to generate retroposed gene copies, or retrocopies. Intriguingly, the formation of retrocopies depends upon the enzymatic machinery encoded by retrotransposable elements, genomic parasites occurring in the majority of eukaryotes. Most retrocopies are depleted of the regulatory regions found upstream of their parental genes; therefore, they were initially considered transcriptionally incompetent gene copies, or retropseudogenes. However, examples of functional retrocopies, or retrogenes, have accumulated since the 1980s. Here, we review what we have learned about retrocopies in animals, plants and other eukaryotic organisms, with a particular emphasis on comparative and population genomic analyses complemented with transcriptomic datasets. In addition, these data have provided information about the dynamics of the different "life cycle" stages of retrocopies (i.e., polymorphic retrocopy number variants, fixed retropseudogenes and retrogenes) and have provided key insights into the retroduplication mechanisms, the patterns and evolutionary forces at work during the fixation process and the biological function of retrogenes. Functional genomic and transcriptomic data have also revealed that many retropseudogenes are transcriptionally active and a biological role has been experimentally determined for many. Finally, we have learned that not only non-long terminal repeat retroelements but also long terminal repeat retroelements play a role in the emergence of retrocopies across eukaryotes. This body of work has shown that mRNA-mediated duplication represents a widespread phenomenon that produces an array of new genes that contribute to organismal diversity and adaptation.<br /> (© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
Details
- Language :
- English
- ISSN :
- 1759-6653
- Volume :
- 9
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Genome biology and evolution
- Publication Type :
- Academic Journal
- Accession number :
- 28605529
- Full Text :
- https://doi.org/10.1093/gbe/evx081