Back to Search Start Over

Genomic profiling of pelvic genital type leiomyosarcoma in a woman with a germline CHEK2 :c.1100delC mutation and a concomitant diagnosis of metastatic invasive ductal breast carcinoma.

Authors :
Thibodeau ML
Reisle C
Zhao E
Martin LA
Alwelaie Y
Mungall KL
Ch'ng C
Thomas R
Ng T
Yip S
J Lim H
Sun S
Young SS
Karsan A
Zhao Y
Mungall AJ
Moore RA
J Renouf D
Gelmon K
Ma YP
Hayes M
Laskin J
Marra MA
Schrader KA
Jones SJM
Source :
Cold Spring Harbor molecular case studies [Cold Spring Harb Mol Case Stud] 2017 Sep 01; Vol. 3 (5). Date of Electronic Publication: 2017 Sep 01 (Print Publication: 2017).
Publication Year :
2017

Abstract

We describe a woman with the known pathogenic germline variant CHEK2 :c.1100delC and synchronous diagnoses of both pelvic genital type leiomyosarcoma (LMS) and metastatic invasive ductal breast carcinoma. CHEK2 (checkpoint kinase 2) is a tumor-suppressor gene encoding a serine/threonine-protein kinase (CHEK2) involved in double-strand DNA break repair and cell cycle arrest. The CHEK2 :c.1100delC variant is a moderate penetrance allele resulting in an approximately twofold increase in breast cancer risk. Whole-genome and whole-transcriptome sequencing were performed on the leiomyosarcoma and matched blood-derived DNA. Despite the presence of several genomic hits within the double-strand DNA damage pathway ( CHEK2 germline variant and multiple RAD51B somatic structural variants), tumor profiling did not show an obvious DNA repair deficiency signature. However, even though the LMS displayed clear malignant features, its genomic profiling revealed several characteristics classically associated with leiomyomas including a translocation, t(12;14), with one breakpoint disrupting RAD51B and the other breakpoint upstream of HMGA2 with very high expression of HMGA2 and PLAG1 This is the first report of LMS genomic profiling in a patient with the germline CHEK2 :c.1100delC variant and an additional diagnosis of metastatic invasive ductal breast carcinoma. We also describe a possible mechanistic relationship between leiomyoma and LMS based on genomic and transcriptome data. Our findings suggest that RAD51B translocation and HMGA2 overexpression may play an important role in LMS oncogenesis.<br /> (© 2017 Thibodeau et al.; Published by Cold Spring Harbor Laboratory Press.)

Details

Language :
English
ISSN :
2373-2873
Volume :
3
Issue :
5
Database :
MEDLINE
Journal :
Cold Spring Harbor molecular case studies
Publication Type :
Academic Journal
Accession number :
28514723
Full Text :
https://doi.org/10.1101/mcs.a001628