Back to Search Start Over

Assembly of polymer micelles through the sol-gel transition for effective cancer therapy.

Authors :
Khaliq NU
Oh KS
Sandra FC
Joo Y
Lee J
Byun Y
Kim IS
Kwon IC
Seo JH
Kim SY
Yuk SH
Source :
Journal of controlled release : official journal of the Controlled Release Society [J Control Release] 2017 Jun 10; Vol. 255, pp. 258-269. Date of Electronic Publication: 2017 Apr 26.
Publication Year :
2017

Abstract

Photo-induced apoptosis-targeted chemotherapy (PIATC) was designed and characterized to propose a new protocol for improved chemotherapy. Intratumoral injection was selected as the mode of administration of the anticancer drug, doxorubicin (DOX). To extend the retention time of DOX at the tumor parenchyma, in-situ gel formation was induced through the sol-gel transition of the Pluronic NPs containing a prodrug of DOX or a photosensitizer. The prodrug (DEVD-S-DOX) was designed to be inactive with a peptide moiety (Aspartic acid-Glutamic acid-Valine-Aspartic acid: DEVD) linked to DOX and to be cleaved into free DOX by caspase-3 expressed with apoptosis. For reactive oxygen species (ROS)-mediated apoptosis, photo-irradiation with methylene blue (MB, photosensitizer) was utilized. The sol-gel transition of the Pluronic NPs containing reactive species, DEVD-S-DOX or MB, was examined by measuring the cloud point and the gel strength in response to temperature change. ROS-mediated apoptosis was observed by measuring the ROS and membrane integrity with induced apoptosis. The in vivo antitumor efficacy of PIATC was measured with a cardiotoxicity assay in tumor-bearing mice.<br /> (Copyright © 2017 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-4995
Volume :
255
Database :
MEDLINE
Journal :
Journal of controlled release : official journal of the Controlled Release Society
Publication Type :
Academic Journal
Accession number :
28456679
Full Text :
https://doi.org/10.1016/j.jconrel.2017.04.039