Back to Search Start Over

A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation.

Authors :
Smith PJ
Kondrat SA
Chater PA
Yeo BR
Shaw GM
Lu L
Bartley JK
Taylor SH
Spencer MS
Kiely CJ
Kelly GJ
Park CW
Hutchings GJ
Source :
Chemical science [Chem Sci] 2017 Mar 01; Vol. 8 (3), pp. 2436-2447. Date of Electronic Publication: 2017 Jan 03.
Publication Year :
2017

Abstract

Zincian georgeite, an amorphous copper-zinc hydroxycarbonate, has been prepared by co-precipitation using acetate salts and ammonium carbonate. Incorporation of zinc into the georgeite phase and mild ageing conditions inhibits crystallisation into zincian malachite or aurichalcite. This zincian georgeite precursor was used to prepare a Cu/ZnO catalyst, which exhibits a superior performance to a zincian malachite derived catalyst for methanol synthesis and the low temperature water-gas shift (LTS) reaction. Furthermore, the enhanced LTS activity and stability in comparison to that of a commercial Cu/ZnO/Al <subscript>2</subscript> O <subscript>3</subscript> catalyst, indicates that the addition of alumina as a stabiliser may not be required for the zincian georgeite derived Cu/ZnO catalyst. The enhanced performance is partly attributed to the exclusion of alkali metals from the synthesis procedure, which are known to act as catalyst poisons. The effect of residual sodium on the microstructural properties of the catalyst precursor was investigated further from preparations using sodium carbonate.

Details

Language :
English
ISSN :
2041-6520
Volume :
8
Issue :
3
Database :
MEDLINE
Journal :
Chemical science
Publication Type :
Academic Journal
Accession number :
28451351
Full Text :
https://doi.org/10.1039/c6sc04130b