Back to Search
Start Over
Replicative senescence promotes prothrombotic responses in endothelial cells: Role of NADPH oxidase- and cyclooxygenase-derived oxidative stress.
- Source :
-
Experimental gerontology [Exp Gerontol] 2017 Jul; Vol. 93, pp. 7-15. Date of Electronic Publication: 2017 Apr 13. - Publication Year :
- 2017
-
Abstract
- Endothelial senescence has been suggested to promote endothelial dysfunction in age-related vascular disorders. This study evaluated the prothrombotic properties of senescent endothelial cells (ECs) and the underlying mechanism. Serial passaging from passage (P)1 to P4 (replicative senescence) of porcine coronary artery ECs, or treatment of P1 ECs with the endothelial nitric oxide synthase (eNOS) inhibitor L-NAME (premature senescence) induced acquisition of markers of senescence including increased senescence-associated-β-galactosidase (SA-β-gal) activity and p53, p21, p16 expression. Approximately 55% of P3 cells were senescent with a high level oxidative stress, and decreased eNOS-derived nitric oxide (NO) formation associated with increased expression of NADPH oxidase subunits (gp91phox, p47phox), cyclooxygenase (COX)-2 but not COX-1, and a decreased eNOS expression leading to a reduced ability of ECs to inhibit platelet aggregation. P3 cells also presented increased expression and activity of tissue factor (TF), a key initiator of the coagulation cascade. Treatment of senesecent cells with a NADPH oxidase inhibitor (VAS-2870) or by a COX inhibitor (indomethacin) reduced oxidative stress, decreased TF activity and expression, and reduced the expression of gp91phox, p47phox and COX-2 and restored the ability of ECs to inhibit effectively platelet aggregation. Thus, replicative endothelial senescence promotes a prothrombotic response involving the down-regulation of the protective NO pathway and the upregulation of the NADPH oxidase- and COXs-dependent oxidative stress pathway promoting TF expression and activity.<br /> (Copyright © 2017 Elsevier Inc. All rights reserved.)
- Subjects :
- Animals
Cell Division physiology
Cells, Cultured
Coronary Vessels cytology
Coronary Vessels metabolism
Endothelial Cells metabolism
Endothelial Cells pathology
Endothelium, Vascular metabolism
Humans
Nitric Oxide biosynthesis
Platelet Aggregation physiology
Sus scrofa
Thromboplastin metabolism
Thrombosis enzymology
Thrombosis pathology
Up-Regulation physiology
Cellular Senescence physiology
Endothelium, Vascular cytology
NADPH Oxidases physiology
Oxidative Stress physiology
Prostaglandin-Endoperoxide Synthases physiology
Subjects
Details
- Language :
- English
- ISSN :
- 1873-6815
- Volume :
- 93
- Database :
- MEDLINE
- Journal :
- Experimental gerontology
- Publication Type :
- Academic Journal
- Accession number :
- 28412252
- Full Text :
- https://doi.org/10.1016/j.exger.2017.04.006