Back to Search Start Over

Combination therapy with potent PI3K and MAPK inhibitors overcomes adaptive kinome resistance to single agents in preclinical models of glioblastoma.

Authors :
McNeill RS
Canoutas DA
Stuhlmiller TJ
Dhruv HD
Irvin DM
Bash RE
Angus SP
Herring LE
Simon JM
Skinner KR
Limas JC
Chen X
Schmid RS
Siegel MB
Van Swearingen AED
Hadler MJ
Sulman EP
Sarkaria JN
Anders CK
Graves LM
Berens ME
Johnson GL
Miller CR
Source :
Neuro-oncology [Neuro Oncol] 2017 Oct 19; Vol. 19 (11), pp. 1469-1480.
Publication Year :
2017

Abstract

Background: Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Prognosis remains poor despite multimodal therapy. Developing alternative treatments is essential. Drugs targeting kinases within the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) effectors of receptor tyrosine kinase (RTK) signaling represent promising candidates.<br />Methods: We previously developed a non-germline genetically engineered mouse model of GBM in which PI3K and MAPK are activated via Pten deletion and KrasG12D in immortalized astrocytes. Using this model, we examined the influence of drug potency on target inhibition, alternate pathway activation, efficacy, and synergism of single agent and combination therapy with inhibitors of these 2 pathways. Efficacy was then examined in GBM patient-derived xenografts (PDX) in vitro and in vivo.<br />Results: PI3K and mitogen-activated protein kinase kinase (MEK) inhibitor potency was directly associated with target inhibition, alternate RTK effector activation, and efficacy in mutant murine astrocytes in vitro. The kinomes of GBM PDX and tumor samples were heterogeneous, with a subset of the latter harboring MAPK hyperactivation. Dual PI3K/MEK inhibitor treatment overcame alternate effector activation, was synergistic in vitro, and was more effective than single agent therapy in subcutaneous murine allografts. However, efficacy in orthotopic allografts was minimal. This was likely due to dose-limiting toxicity and incomplete target inhibition.<br />Conclusion: Drug potency influences PI3K/MEK inhibitor-induced target inhibition, adaptive kinome reprogramming, efficacy, and synergy. Our findings suggest that combination therapies with highly potent, brain-penetrant kinase inhibitors will be required to improve patient outcomes.<br /> (© The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com)

Details

Language :
English
ISSN :
1523-5866
Volume :
19
Issue :
11
Database :
MEDLINE
Journal :
Neuro-oncology
Publication Type :
Academic Journal
Accession number :
28379424
Full Text :
https://doi.org/10.1093/neuonc/nox044