Back to Search
Start Over
The Hsp90 machinery facilitates the transport of diphtheria toxin into human cells.
- Source :
-
Scientific reports [Sci Rep] 2017 Apr 04; Vol. 7 (1), pp. 613. Date of Electronic Publication: 2017 Apr 04. - Publication Year :
- 2017
-
Abstract
- Diphtheria toxin kills human cells because it delivers its enzyme domain DTA into their cytosol where it inhibits protein synthesis. After receptor-mediated uptake of the toxin, DTA translocates from acidic endosomes into the cytosol, which might be assisted by host cell factors. Here we investigated the role of Hsp90 and its co-chaperones during the uptake of native diphtheria toxin into human cells and identified the components of the Hsp90 machinery including Hsp90, Hsp70, Cyp40 and the FK506 binding proteins FKBP51 and FKBP52 as DTA binding partners. Moreover, pharmacological inhibition of the chaperone activity of Hsp90 and Hsp70 and of the peptidyl-prolyl cis/trans isomerase (PPIase) activity of Cyps and FKBPs protected cells from intoxication with diphtheria toxin and inhibited the pH-dependent trans-membrane transport of DTA into the cytosol. In conclusion, these host cell factors facilitate toxin uptake into human cells, which might lead to development of novel therapeutic strategies against diphtheria.
- Subjects :
- Animals
CHO Cells
Carrier Proteins metabolism
Cell Membrane metabolism
Cells, Cultured
Cricetulus
Cytosol metabolism
Diphtheria Toxin toxicity
Enzyme Activation drug effects
HSP90 Heat-Shock Proteins antagonists & inhibitors
HeLa Cells
Host-Pathogen Interactions
Humans
Hydrogen-Ion Concentration
Models, Biological
Molecular Chaperones metabolism
Peptidylprolyl Isomerase metabolism
Protein Binding
Protein Transport
Proteolysis
Diphtheria Toxin metabolism
HSP90 Heat-Shock Proteins metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 7
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 28377614
- Full Text :
- https://doi.org/10.1038/s41598-017-00780-x