Back to Search Start Over

Further insights into the impact of mouse follicle stage on graft outcome in an artificial ovary environment.

Authors :
Chiti MC
Dolmans MM
Lucci CM
Paulini F
Donnez J
Amorim CA
Source :
Molecular human reproduction [Mol Hum Reprod] 2017 Jun 01; Vol. 23 (6), pp. 381-392.
Publication Year :
2017

Abstract

Study Question: Are mouse preantral follicles differently affected by isolation, encapsulation and/or grafting procedures according to stage?<br />Summary Answer: Isolated secondary follicles showed superior ability to survive and grow after transplantation, which was not related to a particular effect of the isolation and/or grafting procedure, but rather to their own ability to induce neoangiogenesis.<br />What Is Known Already: Isolated and encapsulated mouse preantral follicles can survive (6-27%) and grow (80-100%) in a fibrin matrix with a low concentration of fibrinogen and thrombin (F12.5/T1) after short-term transplantation.<br />Study Design, Size, Duration: An in vivo experimental model using 20 donor Naval Medical Research Institute (NMRI) mice (6-25 weeks of age) and 14 recipient severe combined immunodeficient (SCID) mice (11-39 weeks of age) was applied. Each NMRI mouse underwent mechanical disruption of both ovaries and isolation of primordial-primary and secondary follicles with ovarian stromal cells, in order to encapsulate them in an F12.5/T1 matrix. Twelve out of 40 fibrin clots were immediately fixed as controls (D0) (10 for histology and 2 for scanning electron microscopy [SEM]) and the others (n = 28) were grafted to the inner part of the peritoneum for 2 (16 fibrin clots) or 7 (12 fibrin clots) days (D2 and D7).<br />Participants/materials, Setting, Methods: This study involved the participation of the Gynecology Research Unit (Universitè Catholique de Louvain) and the Physiological Sciences Department (University of Brasília). Specific techniques were used to analyze the follicle recovery rate (hematoxylin-eosin staining), vascularization (CD34) and follicle ultrastructure (transmission electron microscopy [TEM] and SEM).<br />Main Results and the Role of Chance: After follicle isolation and encapsulation, a statistically higher percentage of normal follicles was observed in the secondary group (62%) than in the primordial-primary group (47%). Follicle recovery rates were 34% and 62% for primordial-primary and secondary follicles on D2, respectively, and 12% and 42% on D7, confirming that secondary follicles survive better than primordial-primary follicles after grafting. Concerning vascularization, both follicle stages exhibited similar vascularization to that seen in control mouse ovary on D7, but a significantly higher number of vessels and greater vessel surface area were detected in the secondary follicle group. Despite structural differences in fiber density between fibrin clots and ovarian tissue observed by SEM and TEM, preantral follicles appeared to be well encapsulated in the matrix, also showing a normal ultrastructure after grafting.<br />Large Scale Data: Not applicable.<br />Limitations, Reasons for Caution: As demonstrated by our results during the isolation procedure, we encapsulated a significantly higher number of round structures in the primordial-primary group than in the secondary group, which could partially explain the lower recovery rate of early-stage follicles in our previous study. However, it is not excluded that the physical and mechanical properties of the fibrin matrix may also play a role in follicle survival and growth, so further investigations are needed.<br />Wider Implications of the Findings: This research represents one more key step in the creation of the artificial ovary.<br />Study Funding/competing Interest(s): This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS) to C.A. Amorim as a research associate at FRS-FNRS and (grant 5/4/150/5 awarded to M.M. Dolmans), Fonds Spéciaux de Recherche, Fondation St Luc, Foundation Against Cancer, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Brazil) (grant #013/14 CAPES/WBI awarded to C.M. Lucci, with F. Paulini receiving a post-doctoral fellowship), and Wallonie-Bruxelles International, and donations from the Ferrero family. None of the authors have any competing interests to declare in relation to the topic.<br /> (© The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)

Details

Language :
English
ISSN :
1460-2407
Volume :
23
Issue :
6
Database :
MEDLINE
Journal :
Molecular human reproduction
Publication Type :
Academic Journal
Accession number :
28333304
Full Text :
https://doi.org/10.1093/molehr/gax016