Back to Search
Start Over
Zinc-finger motifs expressed in E. coli and folded in vitro direct specific binding to DNA.
- Source :
-
Nature [Nature] 1988 Mar 17; Vol. 332 (6161), pp. 284-6. - Publication Year :
- 1988
-
Abstract
- The short sequence motif named 'zinc finger', first recognized repeated in tandem in the Xenopus transcription factor IIIA (TFIIIA), is also found in the yeast transcriptional activator SWI5 (ref. 3) and many other regulator proteins. Embedded in the 709-amino-acid polypeptide chain of SWI5 are three tandemly repeated zinc-finger motifs. Because the zinc fingers of TFIIIA are known to bind to DNA, it is probable that in the case of SWI5 these finger motifs also play an important, but not necessarily exclusive, role in the sequence-specific binding of the protein to DNA. To test this prediction we have expressed the 89-amino-acid sequence of the domain containing the three zinc fingers of SWI5 in Escherichia coli as a cleavable fusion protein, purified under denaturing conditions and folded in vitro. This experimental approach allows us to study directly both the metal requirement and DNA-binding properties of the isolated polypeptide. We find that zinc is required for specific DNA recognition and, most significantly, DNaseI protection studies show that the isolated three-fingered domain is sufficient for sequence-specific binding to DNA.
- Subjects :
- Amino Acid Sequence
Cloning, Molecular
Cyanogen Bromide
DNA Restriction Enzymes genetics
DNA, Recombinant
DNA-Binding Proteins genetics
Deoxyribonuclease I metabolism
Metalloproteins genetics
Molecular Sequence Data
Mutation
Peptide Fragments genetics
Peptide Fragments metabolism
Promoter Regions, Genetic
Protein Conformation
Recombinant Fusion Proteins genetics
Recombinant Fusion Proteins metabolism
Repetitive Sequences, Nucleic Acid
Saccharomyces cerevisiae Proteins
Transcription Factors genetics
Zinc
DNA metabolism
DNA-Binding Proteins metabolism
Deoxyribonucleases, Type II Site-Specific
Escherichia coli genetics
Metalloproteins metabolism
Transcription Factors metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 0028-0836
- Volume :
- 332
- Issue :
- 6161
- Database :
- MEDLINE
- Journal :
- Nature
- Publication Type :
- Academic Journal
- Accession number :
- 2831463
- Full Text :
- https://doi.org/10.1038/332284a0