Back to Search Start Over

Structural studies of Neurospora crassa LPMO9D and redox partner CDHIIA using neutron crystallography and small-angle scattering.

Authors :
Bodenheimer AM
O'Dell WB
Stanley CB
Meilleur F
Source :
Carbohydrate research [Carbohydr Res] 2017 Aug 07; Vol. 448, pp. 200-204. Date of Electronic Publication: 2017 Mar 04.
Publication Year :
2017

Abstract

Sensitivity to hydrogen/deuterium and lack of observable radiation damage makes cold neutrons an ideal probe the structural studies of proteins with highly photosensitive groups such as the copper center of lytic polysaccharide monooxygenases (LPMOs) and flavin adenine dinucleotide (FAD) and heme redox cofactors of cellobiose dehydrogenases (CDHs). Here, neutron crystallography and small-angle neutron scattering are used to investigate Neurospora crassa LPMO9D (NcLPMO9D) and CDHIIA (NcCDHIIA), respectively. The presence of LPMO greatly enhances the efficiency of commercial glycoside hydrolase cocktails in the depolymerization of cellulose. LPMOs can receive electrons from CDHs to activate molecular dioxygen for the oxidation of cellulose resulting in chain cleavage and disruption of local crystallinity. Using neutron protein crystallography, the hydrogen/deuterium atoms of NcLPMO9D could be located throughout the structure. At the copper active site, the protonation states of the side chains of His1, His84, His157 and Tyr168, and the orientation of water molecules could be determined. Small-angle neutron scattering measurements provided low resolution models of NcCDHIIA with both the dehydrogenase and cytochrome domains in oxidized states that exhibited elongated conformations. This work demonstrates the suitability of neutron diffraction and scattering for characterizing enzymes critical to oxidative cellulose deconstruction.<br /> (Copyright © 2017 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1873-426X
Volume :
448
Database :
MEDLINE
Journal :
Carbohydrate research
Publication Type :
Academic Journal
Accession number :
28291519
Full Text :
https://doi.org/10.1016/j.carres.2017.03.001