Back to Search Start Over

Porous Gold Nanoparticle-Decorated Nanoreactors Prepared from Smartly Designed Functional Polystyrene-block-Poly(d,l-Lactide) Diblock Copolymers: Toward Efficient Systems for Catalytic Cascade Reaction Processes.

Authors :
Poupart R
Benlahoues A
Le Droumaguet B
Grande D
Source :
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2017 Sep 20; Vol. 9 (37), pp. 31279-31290. Date of Electronic Publication: 2017 Mar 15.
Publication Year :
2017

Abstract

Original porous catalytic supports can be engineered via an effective and straightforward synthetic route to polystyrene-block-poly(d,l-lactide) diblock copolymer precursors displaying an acid-cleavable acetal junction between both blocks. To this purpose, we synthesized an acetal-containing heterodifunctional initiator, thus enabling to combine two different polymerization methods, i.e., first atom transfer radical polymerization (ATRP) of styrene, and then ring-opening polymerization (ROP) of d,l-lactide. Thanks to the labile nature of the acetal junction, oriented porous frameworks could be obtained upon trifluoroacetic acid-mediated cleavage of the latter, after orientation of the block copolymer nanodomains by solvent vapor annealing. The resulting porous materials bearing a reactive aldehyde function at the pore surface allowed for further chemical modification via reductive amination with amino-containing compounds, such as tetraethylenepentamine, thus leading to amine-functionalized porous polystyrene. In situ generated gold nanoparticles could then be immobilized within such functionalized porous nanoreactors, and these hybrid materials could find interesting applications in heterogeneous supported catalysis. In this regard, model catalytic reactions, including C-C homocoupling of benzeneboronic acid derivatives, hydride-mediated reduction of nitroaromatic compounds, and especially unprecedented "one-pot" cascade reactions consisting of the latter consecutive reactions from 3-nitrobenzeneboronic acid, were successfully monitored by different chromatographic and spectroscopic techniques.

Details

Language :
English
ISSN :
1944-8252
Volume :
9
Issue :
37
Database :
MEDLINE
Journal :
ACS applied materials & interfaces
Publication Type :
Academic Journal
Accession number :
28266836
Full Text :
https://doi.org/10.1021/acsami.6b16157