Back to Search Start Over

Graphene-Borate as an Efficient Fire Retardant for Cellulosic Materials with Multiple and Synergetic Modes of Action.

Authors :
Nine MJ
Tran DN
Tung TT
Kabiri S
Losic D
Source :
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2017 Mar 22; Vol. 9 (11), pp. 10160-10168. Date of Electronic Publication: 2017 Mar 10.
Publication Year :
2017

Abstract

To address high fire risks of flamable cellulosic materials, that can trigger easy combustion, flame propagation, and release of toxic gases, we report a new fire-retardant approach using synergetic actions combining unique properties of reduced graphene oxide (rGO) and hydrated-sodium metaborates (SMB). The single-step treatment of cellulosic materials by a composite suspension of rGO/SMB was developed to create a barrier layer on sawdust surface providing highly effective fire retardant protection with multiple modes of action. These performances are designed considering synergy between properties of hydrated-SMB crystals working as chemical heat-sink to slow down the thermal degradation of the cellulosic particles and gas impermeable rGO layers that prevents access of oxygen and the release of toxic volatiles. The rGO outer layer also creates a thermal and physical barrier by donating carbon between the flame and unburnt wood particles. The fire-retardant performance of developed graphene-borate composite and mechanism of fire protection are demonstrated by testing of different forms of cellulosic materials such as pine sawdust, particle-board, and fiber-based structures. Results revealed their outstanding self-extinguishing behavior with significant resistance to release of toxic and flammable volatiles suggesting rGO/SMB to be suitable alternative to the conventional toxic halogenated flame-retardant materials.

Details

Language :
English
ISSN :
1944-8252
Volume :
9
Issue :
11
Database :
MEDLINE
Journal :
ACS applied materials & interfaces
Publication Type :
Academic Journal
Accession number :
28244736
Full Text :
https://doi.org/10.1021/acsami.7b00572