Back to Search
Start Over
Tolerance to structural disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted nanocrystals.
- Source :
-
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2017 Mar 14; Vol. 114 (11), pp. 2836-2841. Date of Electronic Publication: 2017 Feb 27. - Publication Year :
- 2017
-
Abstract
- Large, freestanding membranes with remarkably high elastic modulus (>10 GPa) have been fabricated through the self-assembly of ligand-stabilized inorganic nanocrystals, even though these nanocrystals are connected only by soft organic ligands (e.g., dodecanethiol or DNA) that are not cross-linked or entangled. Recent developments in the synthesis of polymer-grafted nanocrystals have greatly expanded the library of accessible superlattice architectures, which allows superlattice mechanical behavior to be linked to specific structural features. Here, colloidal self-assembly is used to organize polystyrene-grafted Au nanocrystals at a fluid interface to form ordered solids with sub-10-nm periodic features. Thin-film buckling and nanoindentation are used to evaluate the mechanical behavior of polymer-grafted nanocrystal superlattices while exploring the role of polymer structural conformation, nanocrystal packing, and superlattice dimensions. Superlattices containing 3-20 vol % Au are found to have an elastic modulus of ∼6-19 GPa, and hardness of ∼120-170 MPa. We find that rapidly self-assembled superlattices have the highest elastic modulus, despite containing significant structural defects. Polymer extension, interdigitation, and grafting density are determined to be critical parameters that govern superlattice elastic and plastic deformation.
Details
- Language :
- English
- ISSN :
- 1091-6490
- Volume :
- 114
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Publication Type :
- Academic Journal
- Accession number :
- 28242704
- Full Text :
- https://doi.org/10.1073/pnas.1618508114