Back to Search
Start Over
Unraveling biophysical interactions of radiation pneumonitis in non-small-cell lung cancer via Bayesian network analysis.
- Source :
-
Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology [Radiother Oncol] 2017 Apr; Vol. 123 (1), pp. 85-92. Date of Electronic Publication: 2017 Feb 22. - Publication Year :
- 2017
-
Abstract
- Background: In non-small-cell lung cancer radiotherapy, radiation pneumonitis≥grade 2 (RP2) depends on patients' dosimetric, clinical, biological and genomic characteristics.<br />Methods: We developed a Bayesian network (BN) approach to explore its potential for interpreting biophysical signaling pathways influencing RP2 from a heterogeneous dataset including single nucleotide polymorphisms, micro RNAs, cytokines, clinical data, and radiation treatment plans before and during the course of radiotherapy. Model building utilized 79 patients (21 with RP2) with complete data, and model testing used 50 additional patients with incomplete data. A developed large-scale Markov blanket approach selected relevant predictors. Resampling by k-fold cross-validation determined the optimal BN structure. Area under the receiver-operating characteristics curve (AUC) measured performance.<br />Results: Pre- and during-treatment BNs identified biophysical signaling pathways from the patients' relevant variables to RP2 risk. Internal cross-validation for the pre-BN yielded an AUC=0.82 which improved to 0.87 by incorporating during treatment changes. In the testing dataset, the pre- and during AUCs were 0.78 and 0.82, respectively.<br />Conclusions: Our developed BN approach successfully handled a high number of heterogeneous variables in a small dataset, demonstrating potential for unraveling relevant biophysical features that could enhance prediction of RP2, although the current observations would require further independent validation.<br /> (Copyright © 2017 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-0887
- Volume :
- 123
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
- Publication Type :
- Academic Journal
- Accession number :
- 28237401
- Full Text :
- https://doi.org/10.1016/j.radonc.2017.02.004