Back to Search Start Over

Lymphotoxin-β Interacts with Methylated EGFR to Mediate Acquired Resistance to Cetuximab in Head and Neck Cancer.

Authors :
Hsu DS
Hwang WL
Yuh CH
Chu CH
Ho YH
Chen PB
Lin HS
Lin HK
Wu SP
Lin CY
Hsu WH
Lan HY
Wang HJ
Tai SK
Hung MC
Yang MH
Source :
Clinical cancer research : an official journal of the American Association for Cancer Research [Clin Cancer Res] 2017 Aug 01; Vol. 23 (15), pp. 4388-4401. Date of Electronic Publication: 2017 Feb 14.
Publication Year :
2017

Abstract

Purpose: In head and neck squamous cell carcinoma (HNSCC), the incidence of RAS mutation, which is the major cause of cetuximab resistance, is relatively rare compared with the other types of cancers, and the mechanism mediating acquired resistance is unclear compared with the driver gene mutation-mediated de novo resistance. Here, we investigated the driver gene mutation-independent mechanism for cetuximab resistance in HNSCC. Experimental Design: We used the in vitro -selected and in vivo -selected cetuximab-resistant sublines of HNSCC cell lines for investigating the mechanism of acquired resistance to cetuximab. Zebrafish model was applied for evaluating the synergistic effect of combinatory drugs for overcoming cetuximab resistance. Results: The cetuximab-resistant HNSCC cells undergo a Snail-induced epithelial-mesenchymal transition. Mechanistically, Snail induces the expression of lymphotoxin-β (LTβ), a TNF superfamily protein that activates NF-κB, and protein arginine methyltransferase 1 (PRMT1), an arginine methyltransferase that methylates EGFR. LTβ interacts with methylated EGFR to promote its ligand-binding ability and dimerization. Furthermore, LTβ activates the NF-κB pathway through a LTβ receptor-independent mechanism. Combination of an EGFR tyrosine kinase inhibitor and a NF-κB inhibitor effectively suppressed cetuximab-resistant HNSCC and interfering with the EGFR-LTβ interaction reverses resistance. Conclusions: Our findings elucidate the mechanism of driver gene mutations-independent mechanism of acquired resistance to cetuximab in HNSCC and also provide potential strategies for combating cetuximab resistance. Clin Cancer Res; 23(15); 4388-401. ©2017 AACR .<br /> (©2017 American Association for Cancer Research.)

Details

Language :
English
ISSN :
1557-3265
Volume :
23
Issue :
15
Database :
MEDLINE
Journal :
Clinical cancer research : an official journal of the American Association for Cancer Research
Publication Type :
Academic Journal
Accession number :
28196873
Full Text :
https://doi.org/10.1158/1078-0432.CCR-16-1955