Back to Search Start Over

Detection of Mycobacterium chelonae, Mycobacterium abscessus Group, and Mycobacterium fortuitum Complex by a Multiplex Real-Time PCR Directly from Clinical Samples Using the BD MAX System.

Authors :
Rocchetti TT
Silbert S
Gostnell A
Kubasek C
Campos Pignatari AC
Widen R
Source :
The Journal of molecular diagnostics : JMD [J Mol Diagn] 2017 Mar; Vol. 19 (2), pp. 295-302.
Publication Year :
2017

Abstract

A new multiplex PCR test was designed to detect Mycobacterium chelonae, Mycobacterium abscessus group, and Mycobacterium fortuitum complex on the BD MAX System. A total of 197 clinical samples previously submitted for mycobacterial culture were tested using the new protocol. Samples were first treated with proteinase K, and then each sample was inoculated into the BD MAX Sample Buffer Tube. Extraction and multiplex PCR were performed by the BD MAX System, using the BD MAX ExK TNA-3 extraction kit and BD TNA Master Mix, along with specific in-house designed primers and probes for each target. The limit of detection of each target, as well as specificity, was evaluated. Of 197 clinical samples included in this study, 133 were positive and 60 were negative for mycobacteria by culture, and another 4 negative samples were spiked with M. chelonae ATCC 35752. The new multiplex PCR on the BD MAX had 97% concordant results with culture for M. abscessus group detection, 99% for M. chelonae, and 100% for M. fortuitum complex. The new multiplex PCR test performed on the BD MAX System proved to be a sensitive and specific test to detect M. chelonae, M. abscessus group, and M. fortuitum complex by real-time PCR on an automated sample-in results-out platform.<br /> (Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1943-7811
Volume :
19
Issue :
2
Database :
MEDLINE
Journal :
The Journal of molecular diagnostics : JMD
Publication Type :
Academic Journal
Accession number :
28190461
Full Text :
https://doi.org/10.1016/j.jmoldx.2016.10.004