Back to Search
Start Over
Transposition of the bamboo Mariner-like element Ppmar1 in yeast.
- Source :
-
Molecular phylogenetics and evolution [Mol Phylogenet Evol] 2017 Apr; Vol. 109, pp. 367-374. Date of Electronic Publication: 2017 Feb 09. - Publication Year :
- 2017
-
Abstract
- The moso bamboo genome contains the two structurally intact and thus potentially functional mariner-like elements Ppmar1 and Ppmar2. Both elements contain perfect terminal inverted repeats (TIRs) and a full-length intact transposase gene. Here we investigated whether Ppmar1 is functional in yeast (Saccharomyces cerevisiae). We have designed a two-component system consisting of a transposase expression cassette and a non-autonomous transposon on two separate plasmids. We demonstrate that the Ppmar1 transposase Pptpase1 catalyses excision of the non-autonomous Ppmar1NA element from the plasmid and reintegration at TA dinucleotide sequences in the yeast chromosomes. In addition, we generated 14 hyperactive Ppmar1 transposase variants by systematic single amino acid substitutions. The most active transposase variant, S171A, induces 10-fold more frequent Ppmar1NA excisions in yeast than the wild type transposase. The Ppmar1 transposon is a promising tool for insertion mutagenesis in moso bamboo and may be used in other plants as an alternative to the established transposon tagging systems.<br /> (Copyright © 2017 Elsevier Inc. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1095-9513
- Volume :
- 109
- Database :
- MEDLINE
- Journal :
- Molecular phylogenetics and evolution
- Publication Type :
- Academic Journal
- Accession number :
- 28189615
- Full Text :
- https://doi.org/10.1016/j.ympev.2017.02.005