Back to Search Start Over

Proton enhanced dynamic battery chemistry for aprotic lithium-oxygen batteries.

Authors :
Zhu YG
Liu Q
Rong Y
Chen H
Yang J
Jia C
Yu LJ
Karton A
Ren Y
Xu X
Adams S
Wang Q
Source :
Nature communications [Nat Commun] 2017 Feb 06; Vol. 8, pp. 14308. Date of Electronic Publication: 2017 Feb 06.
Publication Year :
2017

Abstract

Water contamination is generally considered to be detrimental to the performance of aprotic lithium-air batteries, whereas this view is challenged by recent contrasting observations. This has provoked a range of discussions on the role of water and its impact on batteries. In this work, a distinct battery chemistry that prevails in water-contaminated aprotic lithium-oxygen batteries is revealed. Both lithium ions and protons are found to be involved in the oxygen reduction and evolution reactions, and lithium hydroperoxide and lithium hydroxide are identified as predominant discharge products. The crystallographic and spectroscopic characteristics of lithium hydroperoxide monohydrate are scrutinized both experimentally and theoretically. Intriguingly, the reaction of lithium hydroperoxide with triiodide exhibits a faster kinetics, which enables a considerably lower overpotential during the charging process. The battery chemistry unveiled in this mechanistic study could provide important insights into the understanding of nominally aprotic lithium-oxygen batteries and help to tackle the critical issues confronted.<br />Competing Interests: The authors declare no competing financial interests.

Details

Language :
English
ISSN :
2041-1723
Volume :
8
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
28165008
Full Text :
https://doi.org/10.1038/ncomms14308