Back to Search Start Over

Increased cytoplasmic TDP-43 reduces global protein synthesis by interacting with RACK1 on polyribosomes.

Authors :
Russo A
Scardigli R
La Regina F
Murray ME
Romano N
Dickson DW
Wolozin B
Cattaneo A
Ceci M
Source :
Human molecular genetics [Hum Mol Genet] 2017 Apr 15; Vol. 26 (8), pp. 1407-1418.
Publication Year :
2017

Abstract

TDP-43 is a well known RNA binding protein involved in the pathogenesis of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Dementia (FTLD). In physiological conditions, TDP-43 mainly localizes in the nucleus and shuttles, at least in neurons, to the cytoplasm to form TDP-43 RNA granules. In the nucleus, TDP-43 participates to the expression and splicing of RNAs, while in the cytoplasm its functions range from transport to translation of specific mRNAs. However, if loss or gain of these TDP-43 functions are affected in ALS/FTLD pathogenesis is not clear. Here, we report that TDP-43 localizes on ribosomes not only in primary neurons but also in SH-SY5Y human neuroblastoma cells. We find that binding of TDP-43 to the translational machinery is mediated by an interaction with a specific ribosomal protein, RACK1, and that an increase in cytoplasmic TDP-43 represses global protein synthesis, an effect which is rescued by overexpression of RACK1. Ribosomal loss of RACK1, which excludes TDP-43 from the translational machinery, remarkably reduces formation of TDP-43 cytoplasmic inclusions in neuroblastoma cells. Finally, we corroborate the interaction between TDP-43 and RACK1 on polyribosomes of neuroblastoma cells with mis-localization of RACK1 on TDP-43 positive cytoplasmic inclusions in motor neurons of ALS patients. In conclusions, results from this study suggest that TDP-43 represents a translational repressor not only for specific mRNAs but for overall translation and that its binding to polyribosomes through RACK1 may promote, under conditions inducing ALS pathogenesis, the formation of cytoplasmic inclusions.<br /> (© The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)

Details

Language :
English
ISSN :
1460-2083
Volume :
26
Issue :
8
Database :
MEDLINE
Journal :
Human molecular genetics
Publication Type :
Academic Journal
Accession number :
28158562
Full Text :
https://doi.org/10.1093/hmg/ddx035