Back to Search Start Over

Multiplexing PKA and ERK1&2 kinases FRET biosensors in living cells using single excitation wavelength dual colour FLIM.

Authors :
Demeautis C
Sipieter F
Roul J
Chapuis C
Padilla-Parra S
Riquet FB
Tramier M
Source :
Scientific reports [Sci Rep] 2017 Jan 20; Vol. 7, pp. 41026. Date of Electronic Publication: 2017 Jan 20.
Publication Year :
2017

Abstract

Monitoring of different signalling enzymes in a single assay using multiplex biosensing provides a multidimensional workspace to elucidate biological processes, signalling pathway crosstalk, and determine precise sequence of events at the single living cell level. In this study, we interrogate the complexity in cAMP/PKA-MAPK/ERK1&2 crosstalk by using multi-parameter biosensing experiments to correlate biochemical activities simultaneously in time and space. Using a single excitation wavelength dual colour FLIM method we are able to detect fluorescence lifetime images of two donors to simultaneously measure PKA and ERK1&2 kinase activities in the same cellular localization by using FRET biosensors. To this end, we excite two FRET donors mTFP1 and LSSmOrange with a 440 nm wavelength and we alleviate spectral bleed-through associated limitations with the very dim-fluorescent acceptor ShadowG for mTFP1 and the red-shifted mKate2 for LSSmOrange. The simultaneous recording of PKA and ERK1&2 kinase activities reveals concomitant EGF-mediated activations of both kinases in HeLa cells. Under these conditions the subsequent Forskolin-induced cAMP release reverses the transient increase of EGF-mediated ERK1&2 kinase activity while reinforcing PKA activation. Here we propose a validated methodology for multiparametric kinase biosensing in living cells using FRET-FLIM.

Details

Language :
English
ISSN :
2045-2322
Volume :
7
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
28106114
Full Text :
https://doi.org/10.1038/srep41026