Back to Search
Start Over
Orientia tsutsugamushi Ank9 is a multifunctional effector that utilizes a novel GRIP-like Golgi localization domain for Golgi-to-endoplasmic reticulum trafficking and interacts with host COPB2.
- Source :
-
Cellular microbiology [Cell Microbiol] 2017 Jul; Vol. 19 (7). Date of Electronic Publication: 2017 Feb 03. - Publication Year :
- 2017
-
Abstract
- Orientia tsutsugamushi causes scrub typhus, a potentially fatal infection that afflicts 1 million people annually. This obligate intracellular bacterium boasts one of the largest microbial arsenals of ankyrin repeat-containing protein (Ank) effectors, most of which target the endoplasmic reticulum (ER) by undefined mechanisms. Ank9 is the only one proven to function during infection. Here, we demonstrate that Ank9 bears a motif that mimics the GRIP domain of eukaryotic golgins and is necessary and sufficient for its Golgi localization. Ank9 reaches the ER exclusively by retrograde trafficking from the Golgi. Consistent with this observation, it binds COPB2, a host protein that mediates Golgi-to-ER transport. Ank9 destabilizes the Golgi and ER in a Golgi localization domain-dependent manner and induces the activating transcription factor 4-dependent unfolded protein response. The Golgi is also destabilized in cells infected with O. tsutsugamushi or treated with COPB2 small interfering RNA. COPB2 reduction and/or the cellular events that it invokes, such as Golgi destabilization, benefit Orientia replication. Thus, Ank9 or bacterial negative modulation of COPB2 might contribute to the bacterium's intracellular replication. This report identifies a novel microbial Golgi localization domain, links Ank9 to the ability of O. tsutsugamushi to perturb Golgi structure, and describes the first mechanism by which any Orientia effector targets the secretory pathway.<br /> (© 2017 John Wiley & Sons Ltd.)
- Subjects :
- Activating Transcription Factor 4 metabolism
Cell Line, Tumor
HeLa Cells
Humans
Protein Binding physiology
Protein Domains physiology
Protein Transport physiology
RNA Interference
RNA, Small Interfering genetics
Scrub Typhus microbiology
Unfolded Protein Response physiology
Ankyrins metabolism
Bacterial Proteins metabolism
Coatomer Protein metabolism
Endoplasmic Reticulum metabolism
Golgi Apparatus metabolism
Orientia tsutsugamushi pathogenicity
Subjects
Details
- Language :
- English
- ISSN :
- 1462-5822
- Volume :
- 19
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- Cellular microbiology
- Publication Type :
- Academic Journal
- Accession number :
- 28103630
- Full Text :
- https://doi.org/10.1111/cmi.12727