Back to Search Start Over

Effect of renal denervation on kidney function in patients with chronic kidney disease.

Authors :
Hering D
Marusic P
Duval J
Sata Y
Head GA
Denton KM
Burrows S
Walton AS
Esler MD
Schlaich MP
Source :
International journal of cardiology [Int J Cardiol] 2017 Apr 01; Vol. 232, pp. 93-97. Date of Electronic Publication: 2017 Jan 06.
Publication Year :
2017

Abstract

Aims: Renal denervation (RDN) can reduce blood pressure (BP) and slow the decline of renal function in chronic kidney disease (CKD) up to one year. Whether this effect is maintained beyond 12months and whether the magnitude of BP reduction affects estimated glomerular filtration rate (eGFR) is unknown.<br />Methods and Results: We examined eGFR in 46 CKD patients (baseline eGFR ≤60mL/min/1.73m <superscript>2</superscript> ) on a yearly basis from 60months before to 3, 6, 12 and 24months after RDN. Ambulatory BP was measured before and after RDN. Linear mixed models analysis demonstrated a significant progressive decline in eGFR from months 60 to 12months (-15.47±1.98mL/min/1.73m <superscript>2</superscript> , P<0.0001) and from 12months to baseline prior to RDN (-3.41±1.64mL/min/1.73m <superscript>2</superscript> , P=0.038). Compared to baseline, RDN was associated with improved eGFR at 3months (+3.73±1.64mL/min/1.73m <superscript>2</superscript> , P=0.02) and no significant changes at 6 (+2.54±1.66mL/min/1.73m <superscript>2</superscript> , P=0.13), 12 (+1.78±1.64mL/min/1.73m <superscript>2</superscript> , P=0.28), and 24 (-0.24±2.24mL/min/1.73m <superscript>2</superscript> , P=0.91) months post procedure were observed. RDN significantly reduced daytime SBP from baseline to 24months post procedure (148±19 vs 136±17mmHg, P=0.03) for the entire cohort. Changes in SBP were unrelated to the eGFR changes at 6 (r=0.033, P=0.84), 12 (r=0.01, P=0.93) and 24months (r=-0.42, P=0.17) follow-up.<br />Conclusion: RDN can slow further deterioration of renal function irrespective of BP lowering effects in CKD. RDN-induced inhibition of sympathetic outflow to the renal vascular bed may account for improved eGFR via alterations of intrarenal and glomerular hemodynamics.<br /> (Copyright © 2017 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1874-1754
Volume :
232
Database :
MEDLINE
Journal :
International journal of cardiology
Publication Type :
Academic Journal
Accession number :
28089459
Full Text :
https://doi.org/10.1016/j.ijcard.2017.01.047