Back to Search Start Over

Platelet-activating Factor Mediates Endotoxin Tolerance by Regulating Indoleamine 2,3-Dioxygenase-dependent Expression of the Suppressor of Cytokine Signaling 3.

Authors :
Noh KT
Jung ID
Cha GS
Han MK
Park YM
Source :
The Journal of biological chemistry [J Biol Chem] 2017 Feb 24; Vol. 292 (8), pp. 3290-3298. Date of Electronic Publication: 2017 Jan 11.
Publication Year :
2017

Abstract

Indoleamine 2,3-dioxygenase (IDO) mediates immune tolerance, and suppressor of cytokine signaling 3 (SOCS3) negatively regulates the JAK/STAT signal transduction pathway. We determined previously that platelet-activating factor (PAF) protects mice against LPS-induced endotoxic shock, but its detailed mechanism of action was unknown. We performed survival experiments in IDO <superscript>+/+</superscript> and IDO <superscript>-/-</superscript> mice using an LPS-induced endotoxemia model and rated organ injury (neutrophil infiltration and liver function). Using ELISA and Western blotting, we also investigated the mechanism of PAF-mediated endotoxin tolerance during endotoxemia. PAF-mediated endotoxin tolerance was dependent on IDO in vivo and in vitro and was not observed in IDO <superscript>-/-</superscript> mice. JAK/STAT signaling, crucial for SOCS3 expression, was also impaired in the absence of IDO. In an IDO- and STAT-dependent manner, PAF mediated a decrease in IL-12 and a dramatic increase in IL-10 and reduced mouse mortality. In addition, PAF attenuated LPS-mediated neutrophil infiltration into the lungs and interactions between neutrophil-like (THP-1) and endothelial cells (human umbilical vein endothelial cells). These results indicate that PAF-mediated endotoxin tolerance is initiated via IDO- and JAK/STAT-dependent expression of SOCS3. Our study has revealed a novel tolerogenic mechanism of IDO action and an important association between IDO and SOCS3 with respect to endotoxin tolerance.<br /> (© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.)

Details

Language :
English
ISSN :
1083-351X
Volume :
292
Issue :
8
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
28077574
Full Text :
https://doi.org/10.1074/jbc.M116.764464