Back to Search
Start Over
3D bioprinting of GelMA scaffolds triggers mineral deposition by primary human osteoblasts.
- Source :
-
Biofabrication [Biofabrication] 2017 Jan 10; Vol. 9 (1), pp. 015009. Date of Electronic Publication: 2017 Jan 10. - Publication Year :
- 2017
-
Abstract
- Due to its relatively low level of antigenicity and high durability, titanium has successfully been used as the major material for biological implants. However, because the typical interface between titanium and tissue precludes adequate transmission of load into the surrounding bone, over time, load-bearing implants tend to loosen and revision surgeries are required. Osseointegration of titanium implants requires presentation of both biological and mechanical cues that promote attachment of and trigger mineral deposition by osteoblasts. While many factors contribute to differentiation, the relative importance of the various cues is unclear. To substantially improve osseointegration of titanium implants, we generated a gelatin methacryloyl (GelMA) scaffold, using an extrusion-based 3D bioprinter, which can be directly printed on and grafted to the titanium implant surface. We demonstrate that this scaffold is able to trigger mineral deposition of both MG63 osteoblasts and primary normal human osteoblasts in the absence of any exogenous osteogenic factors. Films of the same formulation failed to promote mineral deposition suggesting that the three dimensional scaffold was able to tip the balance in favor of differentiation despite other potentially unfavorable differentiation cues of the material. We further show that these GelMA lattices can be directly grafted to titanium alloy and are secure in vitro over a period of seven weeks. When grafted within a groove system, the GelMA hydrogel is protected from shearing forces in a marrow implantation model. This prepares the way for osteogenic coatings to be directly manufactured on the implant surface and packaged for surgery.
- Subjects :
- Actins metabolism
Animals
Cattle
Cell Movement
Cells, Cultured
Gelatin chemistry
Humans
Hydrogels chemistry
Minerals chemistry
Models, Animal
Osseointegration
Osteoblasts cytology
Osteoblasts metabolism
Printing, Three-Dimensional
Prostheses and Implants
Shear Strength
Surface Properties
Swine
Titanium chemistry
Bioprinting methods
Minerals metabolism
Tissue Scaffolds chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 1758-5090
- Volume :
- 9
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Biofabrication
- Publication Type :
- Academic Journal
- Accession number :
- 28071596
- Full Text :
- https://doi.org/10.1088/1758-5090/aa53bd