Back to Search
Start Over
Induction of necroptotic cell death by viral activation of the RIG-I or STING pathway.
- Source :
-
Cell death and differentiation [Cell Death Differ] 2017 Apr; Vol. 24 (4), pp. 615-625. Date of Electronic Publication: 2017 Jan 06. - Publication Year :
- 2017
-
Abstract
- Necroptosis is a form of necrotic cell death that requires the activity of the death domain-containing kinase RIP1 and its family member RIP3. Necroptosis occurs when RIP1 is deubiquitinated to form a complex with RIP3 in cells deficient in the death receptor adapter molecule FADD or caspase-8. Necroptosis may play a role in host defense during viral infection as viruses like vaccinia can induce necroptosis while murine cytomegalovirus encodes a viral inhibitor of necroptosis. To see how general the interplay between viruses and necroptosis is, we surveyed seven different viruses. We found that two of the viruses tested, Sendai virus (SeV) and murine gammaherpesvirus-68 (MHV68), are capable of inducing dramatic necroptosis in the fibrosarcoma L929 cell line. We show that MHV68-induced cell death occurs through the cytosolic STING sensor pathway in a TNF-dependent manner. In contrast, SeV-induced death is mostly independent of TNF. Knockdown of the RNA sensing molecule RIG-I or the RIP1 deubiquitin protein, CYLD, but not STING, rescued cells from SeV-induced necroptosis. Accompanying necroptosis, we also find that wild type but not mutant SeV lacking the viral proteins Y1 and Y2 result in the non-ubiquitinated form of RIP1. Expression of Y1 or Y2 alone can suppress RIP1 ubiquitination but CYLD is dispensable for this process. Instead, we found that Y1 and Y2 can inhibit cIAP1-mediated RIP1 ubiquitination. Interestingly, we also found that SeV infection of B6 RIP3 <superscript>-/-</superscript> mice results in increased inflammation in the lung and elevated SeV-specific T cells. Collectively, these data identify viruses and pathways that can trigger necroptosis and highlight the dynamic interplay between pathogen-recognition receptors and cell death induction.
- Subjects :
- Amino Acid Chloromethyl Ketones pharmacology
Animals
Apoptosis drug effects
Cell Line
Cysteine Endopeptidases chemistry
Cysteine Endopeptidases genetics
Cysteine Endopeptidases metabolism
DEAD Box Protein 58 antagonists & inhibitors
DEAD Box Protein 58 genetics
Deubiquitinating Enzyme CYLD
Lung metabolism
Lung pathology
Membrane Proteins antagonists & inhibitors
Membrane Proteins genetics
Mice
Mice, Inbred C57BL
Mice, Knockout
Necrosis
RNA Interference
RNA, Small Interfering metabolism
Receptor-Interacting Protein Serine-Threonine Kinases antagonists & inhibitors
Receptor-Interacting Protein Serine-Threonine Kinases genetics
Receptor-Interacting Protein Serine-Threonine Kinases metabolism
Signal Transduction drug effects
Tumor Necrosis Factor-alpha pharmacology
Ubiquitination drug effects
Viral Proteins genetics
Viral Proteins metabolism
Virus Activation
DEAD Box Protein 58 metabolism
Gammaherpesvirinae physiology
Membrane Proteins metabolism
Sendai virus physiology
Subjects
Details
- Language :
- English
- ISSN :
- 1476-5403
- Volume :
- 24
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Cell death and differentiation
- Publication Type :
- Academic Journal
- Accession number :
- 28060376
- Full Text :
- https://doi.org/10.1038/cdd.2016.153