Back to Search Start Over

Underlying molecular interaction of bovine serum albumin and linezolid: a biophysical outlook.

Authors :
Roy A
Seal P
Sikdar J
Banerjee S
Haldar R
Source :
Journal of biomolecular structure & dynamics [J Biomol Struct Dyn] 2018 Feb; Vol. 36 (2), pp. 387-397. Date of Electronic Publication: 2017 Jan 19.
Publication Year :
2018

Abstract

Linezolid, one of the reserve antibiotic of oxazolidinone class has wide range of antimicrobial activity. Here we have conducted a fundamental study concerning the dynamics of its interaction with bovine serum albumin (BSA), and the post binding modification of the later by employing different spectroscopic (absorption, fluorescence and circular dichroism (CD) spectroscopy) and molecular docking tools. Gradual quenching of the tryptophan (Trp) fluorescence upon addition of linezolid to BSA confirms their interaction. Analysis of fluorescence quenching at different temperature indicates that the interaction is made by static complex formation and the BSA has one binding site for the drug. The negative Gibbs energy change (ΔG <superscript>0</superscript> ), and positive values of enthalpy change (ΔH <superscript>0</superscript> ) and entropy change (ΔS <superscript>0</superscript> ) strongly suggest that it is an entropy driven spontaneous and endothermic reaction. The reaction involves hydrophobic pocket of the protein, which is further stabilized by hydrogen bonding and electrostatic interactions as evidenced from 8-anilino-1-napthalene sulfonic acid, sucrose and NaCl binding studies. These findings also support the molecular docking study using AutoDock 4.2. The influence of this interaction on the secondary structure of the protein is negligible as evidenced by CD spectroscopy. So, from these findings, we conclude that linezolid interacts with BSA in 1:1 ratio through hydrophobic, hydrogen bonding and ionic interactions, and this may not affect the secondary structure of the protein.

Details

Language :
English
ISSN :
1538-0254
Volume :
36
Issue :
2
Database :
MEDLINE
Journal :
Journal of biomolecular structure & dynamics
Publication Type :
Academic Journal
Accession number :
28049370
Full Text :
https://doi.org/10.1080/07391102.2017.1278721