Back to Search Start Over

Constant Volume Gate-Opening by Freezing Rotational Dynamics in Microporous Organically Pillared Layered Silicates.

Authors :
Bärwinkel K
Herling MM
Rieß M
Sato H
Li L
Avadhut YS
Kemnitzer TW
Kalo H
Senker J
Matsuda R
Kitagawa S
Breu J
Source :
Journal of the American Chemical Society [J Am Chem Soc] 2017 Jan 18; Vol. 139 (2), pp. 904-909. Date of Electronic Publication: 2017 Jan 03.
Publication Year :
2017

Abstract

Microporous organically pillared layered silicates (MOPS) are a class of microporous hybrid materials that, by varying pillar density, allows for optimization of guest recognition without the need to explore different framework topologies. MOPS are found to be capable of discriminating two very similar gases, carbon dioxide and acetylene, by selective gate-opening solely through quenching pillar dynamics. Contrary to conventional gate-opening in metal organic frameworks, the additional adsorption capacity is realized without macroscopic volume changes, thus avoiding mechanical stress on the framework. Of the two gases studied, only CO <subscript>2</subscript> can accomplish freezing of pillar dynamics. Moreover, the shape of the slit-type micropores in MOPS can easily be fine-tuned by reducing the charge density of the silicate layers. This concomitantly reduces the Coulomb attraction of cationic interlayer space and anionic host layers. Surprisingly, we found that reducing the charge density then alters the gate-opening mechanism to a conventional structural gate-opening involving an increase in volume.

Details

Language :
English
ISSN :
1520-5126
Volume :
139
Issue :
2
Database :
MEDLINE
Journal :
Journal of the American Chemical Society
Publication Type :
Academic Journal
Accession number :
27992224
Full Text :
https://doi.org/10.1021/jacs.6b11124