Back to Search
Start Over
Means of enhancing bone fracture healing: optimal cell source, isolation methods and acoustic stimulation.
- Source :
-
BMC biotechnology [BMC Biotechnol] 2016 Dec 12; Vol. 16 (1), pp. 89. Date of Electronic Publication: 2016 Dec 12. - Publication Year :
- 2016
-
Abstract
- Background: The human body has an extensive capacity to regenerate bone tissue after trauma. However large defects such as long bone fractures of the lower limbs cannot be restored without intervention and often lead to nonunion. Therefore, the aim of the present study was to assess the pool and biological functions of human mesenchymal stromal cells (hMSCs) isolated from different bone marrow locations of the lower limbs and to identify novel strategies to prime the cells prior to their use in bone fracture healing. Following, bone marrow from the ilium, proximal femur, distal femur and proximal tibia was aspirated and the hMSCs isolated. Bone marrow type, volume, number of mononuclear cells/hMSCs and their self-renewal, multilineage potential, extracellular matrix (ECM) production and surface marker profiling were analyzed. Additionally, the cells were primed to accelerate bone fracture healing either by using acoustic stimulation or varying the initial hMSCs isolation conditions.<br />Results: We found that the more proximal the bone marrow aspiration location, the larger the bone marrow volume was, the higher the content in mononuclear cells/hMSCs and the higher the self-renewal and osteogenic differentiation potential of the isolated hMSCs were. Acoustic stimulation of bone marrow, as well as the isolation of hMSCs in the absence of fetal bovine serum, increased the osteogenic and ECM production potential of the cells, respectively.<br />Conclusion: We showed that bone marrow properties change with the aspiration location, potentially explaining the differences in bone fracture healing between the tibia and the femur. Furthermore, we showed two new priming methods capable of enhancing bone fracture healing.
- Subjects :
- Acoustic Stimulation methods
Bone Regeneration radiation effects
Combined Modality Therapy methods
Fracture Healing radiation effects
Humans
Mesenchymal Stem Cells classification
Treatment Outcome
Bone Regeneration physiology
Fracture Healing physiology
Fractures, Bone therapy
Mesenchymal Stem Cell Transplantation methods
Mesenchymal Stem Cells cytology
Ultrasonic Therapy methods
Subjects
Details
- Language :
- English
- ISSN :
- 1472-6750
- Volume :
- 16
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- BMC biotechnology
- Publication Type :
- Academic Journal
- Accession number :
- 27955656
- Full Text :
- https://doi.org/10.1186/s12896-016-0318-1