Back to Search Start Over

Spatial Measures of Genetic Heterogeneity During Carcinogenesis.

Authors :
Storey K
Ryser MD
Leder K
Foo J
Source :
Bulletin of mathematical biology [Bull Math Biol] 2017 Feb; Vol. 79 (2), pp. 237-276. Date of Electronic Publication: 2016 Nov 30.
Publication Year :
2017

Abstract

In this work we explore the temporal dynamics of spatial heterogeneity during the process of tumorigenesis from healthy tissue. We utilize a spatial stochastic model of mutation accumulation and clonal expansion in a structured tissue to describe this process. Under a two-step tumorigenesis model, we first derive estimates of a non-spatial measure of diversity: Simpson's Index, which is the probability that two individuals sampled at random from the population are identical, in the premalignant population. We next analyze two new measures of spatial population heterogeneity. In particular we study the typical length scale of genetic heterogeneity during the carcinogenesis process and estimate the extent of a surrounding premalignant clone given a clinical observation of a premalignant point biopsy. This evolutionary framework contributes to a growing literature focused on developing a better understanding of the spatial population dynamics of cancer initiation and progression.

Details

Language :
English
ISSN :
1522-9602
Volume :
79
Issue :
2
Database :
MEDLINE
Journal :
Bulletin of mathematical biology
Publication Type :
Academic Journal
Accession number :
27905065
Full Text :
https://doi.org/10.1007/s11538-016-0234-5