Back to Search Start Over

Temperature-Triggered Switchable Helix-Helix Inversion of Poly(phenylacetylene) Bearing l-Valine Ethyl Ester Pendants and Its Chiral Recognition Ability.

Authors :
Zhou Y
Zhang C
Qiu Y
Liu L
Yang T
Dong H
Satoh T
Okamoto Y
Source :
Molecules (Basel, Switzerland) [Molecules] 2016 Nov 21; Vol. 21 (11). Date of Electronic Publication: 2016 Nov 21.
Publication Year :
2016

Abstract

A phenylacetylene containing the l-valine ethyl ester pendant (PAA-Val) was synthesized and polymerized by an organorhodium catalyst (Rh(nbd)BPh₄) to produce the corresponding one-handed helical cis -poly(phenylacetylene) (PPAA-Val). PPAA-Val showed a unique temperature-triggered switchable helix-sense in chloroform, while it was not observed in highly polar solvents, such as N , N '-dimethylformamide (DMF). By heating the solution of PPAA-Val in chloroform, the sign of the CD absorption became reversed, but recovered after cooling the solution to room temperature. Even after six cycles of the heating-cooling treatment, the helix sense of the PPAA-Val's backbone was still switchable without loss of the CD intensity. The PPAA-Val was then coated on silica gel particles to produce novel chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC). These novel PPAA-Val based CSPs showed a high chiral recognition ability for racemic mandelonitrile ( α = 2.18) and racemic trans - N , N '-diphenylcyclohexane-1,2-dicarboxamide ( α = 2.60). Additionally, the one-handed helical cis -polyene backbone of PPAA-Val was irreversibly destroyed to afford PPAA-Val-H by heating in dimethyl sulfoxide (DMSO) accompanied by the complete disappearance of the Cotton effect. Although PPAA-Val-H had the same l-valine ethyl ester pendants as its cis -isomer PPAA-Val, it showed no chiral recognition. It was concluded that the one-handed helical cis -polyene backbone of PPAA-Val plays an important role in the chiral recognition ability.

Details

Language :
English
ISSN :
1420-3049
Volume :
21
Issue :
11
Database :
MEDLINE
Journal :
Molecules (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
27879637
Full Text :
https://doi.org/10.3390/molecules21111583