Back to Search
Start Over
Cardiac Fibroblasts Adopt Osteogenic Fates and Can Be Targeted to Attenuate Pathological Heart Calcification.
- Source :
-
Cell stem cell [Cell Stem Cell] 2017 Feb 02; Vol. 20 (2), pp. 218-232.e5. Date of Electronic Publication: 2016 Nov 17. - Publication Year :
- 2017
-
Abstract
- Mammalian tissues calcify with age and injury. Analogous to bone formation, osteogenic cells are thought to be recruited to the affected tissue and induce mineralization. In the heart, calcification of cardiac muscle leads to conduction system disturbances and is one of the most common pathologies underlying heart blocks. However the cell identity and mechanisms contributing to pathological heart muscle calcification remain unknown. Using lineage tracing, murine models of heart calcification and in vivo transplantation assays, we show that cardiac fibroblasts (CFs) adopt an osteoblast cell-like fate and contribute directly to heart muscle calcification. Small-molecule inhibition of ENPP1, an enzyme that is induced upon injury and regulates bone mineralization, significantly attenuated cardiac calcification. Inhibitors of bone mineralization completely prevented ectopic cardiac calcification and improved post injury heart function. Taken together, these findings highlight the plasticity of fibroblasts in contributing to ectopic calcification and identify pharmacological targets for therapeutic development.<br /> (Copyright © 2017 Elsevier Inc. All rights reserved.)
- Subjects :
- Animals
Basic Helix-Loop-Helix Transcription Factors metabolism
Biomarkers metabolism
Calcification, Physiologic
Calcinosis physiopathology
Cardiomyopathies physiopathology
Cell Differentiation
Cell Separation
Diphosphates metabolism
Disease Models, Animal
Female
Fibroblasts metabolism
Humans
Male
Mice, Inbred C57BL
Myocardial Infarction pathology
Myocardium metabolism
Phosphates metabolism
Phosphoric Diester Hydrolases metabolism
Pyrophosphatases metabolism
Calcinosis pathology
Cardiomyopathies pathology
Cell Lineage
Fibroblasts pathology
Myocardium pathology
Osteogenesis
Subjects
Details
- Language :
- English
- ISSN :
- 1875-9777
- Volume :
- 20
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Cell stem cell
- Publication Type :
- Academic Journal
- Accession number :
- 27867037
- Full Text :
- https://doi.org/10.1016/j.stem.2016.10.005