Back to Search
Start Over
A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery.
- Source :
-
PloS one [PLoS One] 2016 Nov 15; Vol. 11 (11), pp. e0166639. Date of Electronic Publication: 2016 Nov 15 (Print Publication: 2016). - Publication Year :
- 2016
-
Abstract
- Losses in vital functions of the somatic motor and sensory nervous system are induced by severe long-gap peripheral nerve transection injury. In such cases, autologous nerve grafts are the gold standard treatment, despite the unavoidable sacrifice of other healthy functions, whereas the prognosis is not always favorable. Here, we use human skeletal muscle-derived stem cells (Sk-SCs) to reconstitute the function after long nerve-gap injury. Muscles samples were obtained from the amputated legs from 9 patients following unforeseen accidents. The Sk-SCs were isolated using conditioned collagenase solution, and sorted as CD34+/45- (Sk-34) and CD34-/45-/29+ (Sk-DN/29+) cells. Cells were separately cultured/expanded under optimal conditions for 2 weeks, then injected into the athymic nude mice sciatic nerve long-gap model (7-mm) bridging an acellular conduit. After 8-12 weeks, active cell engraftment was observed only in the Sk-34 cell transplanted group, showing preferential differentiation into Schwann cells and perineurial/endoneurial cells, as well as formation of the myelin sheath and perineurium/endoneurium surrounding regenerated axons, resulted in 87% of numerical recovery. Differentiation into vascular cell lineage (pericyte and endothelial cells) were also observed. A significant tetanic tension recovery (over 90%) of downstream muscles following electrical stimulation of the sciatic nerve (at upper portion of the gap) was also achieved. In contrast, Sk-DN/29+ cells were completely eliminated during the first 4 weeks, but relatively higher numerical (83% vs. 41% in axon) and functional (80% vs. 60% in tetanus) recovery than control were observed. Noteworthy, significant increase in the formation of vascular networks in the conduit during the early stage (first 2 weeks) of recovery was observed in both groups with the expression of key factors (mRNA and protein levels), suggesting the paracrine effects to angiogenesis. These results suggested that the human Sk-SCs may be a practical source for autologous stem cell therapy following severe peripheral nerve injury.<br />Competing Interests: The authors have declared that no competing interests exist.
- Subjects :
- Animals
Cell Differentiation genetics
Cell Lineage genetics
Disease Models, Animal
Female
Humans
Mice
Muscle, Skeletal growth & development
Muscle, Skeletal physiopathology
Myelin Sheath metabolism
Peripheral Nerve Injuries physiopathology
Recovery of Function
Schwann Cells metabolism
Sciatic Nerve growth & development
Sciatic Nerve physiopathology
Stem Cells
Nerve Regeneration
Peripheral Nerve Injuries therapy
Sciatic Nerve injuries
Stem Cell Transplantation
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 11
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 27846318
- Full Text :
- https://doi.org/10.1371/journal.pone.0166639