Back to Search Start Over

Editor's Highlight: Microbial-Derived 1,4-Dihydroxy-2-naphthoic Acid and Related Compounds as Aryl Hydrocarbon Receptor Agonists/Antagonists: Structure-Activity Relationships and Receptor Modeling.

Authors :
Cheng Y
Jin UH
Davidson LA
Chapkin RS
Jayaraman A
Tamamis P
Orr A
Allred C
Denison MS
Soshilov A
Weaver E
Safe S
Source :
Toxicological sciences : an official journal of the Society of Toxicology [Toxicol Sci] 2017 Feb; Vol. 155 (2), pp. 458-473. Date of Electronic Publication: 2016 Nov 11.
Publication Year :
2017

Abstract

1,4-Dihydroxy-2-naphthoic acid (1,4-DHNA) is a bacterial-derived metabolite that binds the aryl hydrocarbon receptor (AhR) and exhibits anti-inflammatory activity in the gut. The structure-dependent AhR activity of hydroxyl/carboxy-substituted naphthoic acids (NAs) was determined in young adult mouse colonic (YAMC) cells and human Caco2 colon cancer cells using CYP1A1/CYP1B1 mRNAs as Ah-responsive genes. Compounds used in this study include 1,4-, 3,5-, and 3,7-DHNA, 1,4-dimethoxy-2-naphthoic acid (1,4-DMNA), 1- and 4-hydroxy-2-naphthoic acid (1-HNA, 4-HNA), 1- and 2-naphthoic acid (1-NA, 2-NA), and 1- and 2-naphthol (1-NOH, 2-NOH). 1,4-DHNA was the most potent compound among hydroxyl/carboxy naphthalene derivatives, and the fold induction response for CYP1A1 and CYP1B1 was similar to that observed for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in YAMC and Caco2 cells. 1- and 4-HNA were less potent than 1,4-DHNA but induced maximal (TCDD-like) response for CYP1B1 (both cell lines) and CYP1A1 (Caco2 cells). With the exception of 1- and 2-NA, all compounds significantly induced Cyp1b1 in YAMC cells and these responses were not observed in AhR-deficient YAMC cells generated using CRISPR/Cas9 technology. In addition, we also observed that 1- and 2-NOH (and 1,4-DHNA) were weak AhR agonists, and 1- and 2-NOH also exhibited partial AhR antagonist activity. Structure-activity relationship studies for CYP1A1 but not CYP1B1 were similar in both cell lines, and CYP1A1 induction required one or both 1,4-dihydroxy substituents and activity was significantly enhanced by the 2-carboxyl group. We also used computational analysis to show that 1,4-DHNA and TCDD share similar interactions within the AhR binding pocket and differ primarily due to the negatively charged group of 1,4-DHNA.<br /> (© The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.)

Details

Language :
English
ISSN :
1096-0929
Volume :
155
Issue :
2
Database :
MEDLINE
Journal :
Toxicological sciences : an official journal of the Society of Toxicology
Publication Type :
Academic Journal
Accession number :
27837168
Full Text :
https://doi.org/10.1093/toxsci/kfw230