Back to Search Start Over

A framework for combining a motion atlas with non-motion information to learn clinically useful biomarkers: Application to cardiac resynchronisation therapy response prediction.

Authors :
Peressutti D
Sinclair M
Bai W
Jackson T
Ruijsink J
Nordsletten D
Asner L
Hadjicharalambous M
Rinaldi CA
Rueckert D
King AP
Source :
Medical image analysis [Med Image Anal] 2017 Jan; Vol. 35, pp. 669-684. Date of Electronic Publication: 2016 Oct 11.
Publication Year :
2017

Abstract

We present a framework for combining a cardiac motion atlas with non-motion data. The atlas represents cardiac cycle motion across a number of subjects in a common space based on rich motion descriptors capturing 3D displacement, velocity, strain and strain rate. The non-motion data are derived from a variety of sources such as imaging, electrocardiogram (ECG) and clinical reports. Once in the atlas space, we apply a novel supervised learning approach based on random projections and ensemble learning to learn the relationship between the atlas data and some desired clinical output. We apply our framework to the problem of predicting response to Cardiac Resynchronisation Therapy (CRT). Using a cohort of 34 patients selected for CRT using conventional criteria, results show that the combination of motion and non-motion data enables CRT response to be predicted with 91.2% accuracy (100% sensitivity and 62.5% specificity), which compares favourably with the current state-of-the-art in CRT response prediction.<br /> (Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1361-8423
Volume :
35
Database :
MEDLINE
Journal :
Medical image analysis
Publication Type :
Academic Journal
Accession number :
27770718
Full Text :
https://doi.org/10.1016/j.media.2016.10.002