Back to Search Start Over

Random forest regression for magnetic resonance image synthesis.

Authors :
Jog A
Carass A
Roy S
Pham DL
Prince JL
Source :
Medical image analysis [Med Image Anal] 2017 Jan; Vol. 35, pp. 475-488. Date of Electronic Publication: 2016 Aug 31.
Publication Year :
2017

Abstract

By choosing different pulse sequences and their parameters, magnetic resonance imaging (MRI) can generate a large variety of tissue contrasts. This very flexibility, however, can yield inconsistencies with MRI acquisitions across datasets or scanning sessions that can in turn cause inconsistent automated image analysis. Although image synthesis of MR images has been shown to be helpful in addressing this problem, an inability to synthesize both T <subscript>2</subscript> -weighted brain images that include the skull and FLuid Attenuated Inversion Recovery (FLAIR) images has been reported. The method described herein, called REPLICA, addresses these limitations. REPLICA is a supervised random forest image synthesis approach that learns a nonlinear regression to predict intensities of alternate tissue contrasts given specific input tissue contrasts. Experimental results include direct image comparisons between synthetic and real images, results from image analysis tasks on both synthetic and real images, and comparison against other state-of-the-art image synthesis methods. REPLICA is computationally fast, and is shown to be comparable to other methods on tasks they are able to perform. Additionally REPLICA has the capability to synthesize both T <subscript>2</subscript> -weighted images of the full head and FLAIR images, and perform intensity standardization between different imaging datasets.<br /> (Copyright © 2016 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1361-8423
Volume :
35
Database :
MEDLINE
Journal :
Medical image analysis
Publication Type :
Academic Journal
Accession number :
27607469
Full Text :
https://doi.org/10.1016/j.media.2016.08.009