Cite
Random Survival Forest in practice: a method for modelling complex metabolomics data in time to event analysis.
MLA
Dietrich, Stefan, et al. “Random Survival Forest in Practice: A Method for Modelling Complex Metabolomics Data in Time to Event Analysis.” International Journal of Epidemiology, vol. 45, no. 5, Oct. 2016, pp. 1406–20. EBSCOhost, https://doi.org/10.1093/ije/dyw145.
APA
Dietrich, S., Floegel, A., Troll, M., Kühn, T., Rathmann, W., Peters, A., Sookthai, D., von Bergen, M., Kaaks, R., Adamski, J., Prehn, C., Boeing, H., Schulze, M. B., Illig, T., Pischon, T., Knüppel, S., Wang-Sattler, R., & Drogan, D. (2016). Random Survival Forest in practice: a method for modelling complex metabolomics data in time to event analysis. International Journal of Epidemiology, 45(5), 1406–1420. https://doi.org/10.1093/ije/dyw145
Chicago
Dietrich, Stefan, Anna Floegel, Martina Troll, Tilman Kühn, Wolfgang Rathmann, Anette Peters, Disorn Sookthai, et al. 2016. “Random Survival Forest in Practice: A Method for Modelling Complex Metabolomics Data in Time to Event Analysis.” International Journal of Epidemiology 45 (5): 1406–20. doi:10.1093/ije/dyw145.