Back to Search Start Over

Towards Direct Synthesis of Alane: A Predicted Defect-Mediated Pathway Confirmed Experimentally.

Authors :
Wang LL
Herwadkar A
Reich JM
Johnson DD
House SD
Peña-Martin P
Rockett AA
Robertson IM
Gupta S
Pecharsky VK
Source :
ChemSusChem [ChemSusChem] 2016 Sep 08; Vol. 9 (17), pp. 2358-64. Date of Electronic Publication: 2016 Aug 18.
Publication Year :
2016

Abstract

Alane (AlH3 ) is a unique energetic material that has not found a broad practical use for over 70 years because it is difficult to synthesize directly from its elements. Using density functional theory, we examine the defect-mediated formation of alane monomers on Al(111) in a two-step process: (1) dissociative adsorption of H2 and (2) alane formation, which are both endothermic on a clean surface. Only with Ti dopant to facilitate H2 dissociation and vacancies to provide Al adatoms, both processes become exothermic. In agreement, in situ scanning tunneling microscopy showed that during H2 exposure, alane monomers and clusters form primarily in the vicinity of Al vacancies and Ti atoms. Moreover, ball milling of the Al samples with Ti (providing necessary defects) showed a 10 % conversion of Al into AlH3 or closely related species at 344 bar H2 , indicating that the predicted pathway may lead to the direct synthesis of alane from elements at pressures much lower than the 10(4)  bar expected from bulk thermodynamics.<br /> (© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)

Details

Language :
English
ISSN :
1864-564X
Volume :
9
Issue :
17
Database :
MEDLINE
Journal :
ChemSusChem
Publication Type :
Academic Journal
Accession number :
27535100
Full Text :
https://doi.org/10.1002/cssc.201600338