Back to Search Start Over

Three zinc-finger RNA-binding proteins in cabbage (Brassica rapa) play diverse roles in seed germination and plant growth under normal and abiotic stress conditions.

Authors :
Park YR
Choi MJ
Park SJ
Kang H
Source :
Physiologia plantarum [Physiol Plant] 2017 Jan; Vol. 159 (1), pp. 93-106. Date of Electronic Publication: 2016 Sep 14.
Publication Year :
2017

Abstract

Despite the increasing understanding of the stress-responsive roles of zinc-finger RNA-binding proteins (RZs) in several plant species, such as Arabidopsis thaliana, wheat (Triticum aestivum) and rice (Oryza sativa), the functions of RZs in cabbage (Brassica rapa) have not yet been elucidated. In this study, the functional roles of the three RZ family members present in the cabbage genome, designated as BrRZ1, BrRZ2 and BrRZ3, were investigated in transgenic Arabidopsis under normal and environmental stress conditions. Subcellular localization analysis revealed that all BrRZ proteins were exclusively localized in the nucleus. The expression levels of each BrRZ were markedly increased by cold, drought or salt stress and by abscisic acid (ABA) treatment. Expression of BrRZ3 in Arabidopsis retarded seed germination and stem growth and reduced seed yield of Arabidopsis plants under normal growth conditions. Germination of BrRZ2- or BrRZ3-expressing Arabidopsis seeds was delayed compared with that of wild-type seeds under dehydration or salt stress conditions and cold stress conditions, respectively. Seedling growth of BrRZ3-expressing transgenic Arabidopsis plants was significantly inhibited under salt, dehydration or cold stress conditions. Notably, seedling growth of all three BrRZ-expressing transgenic Arabidopsis plants was inhibited upon ABA treatment. Importantly, all BrRZs possessed RNA chaperone activity. Taken together, these results indicate that the three cabbage BrRZs harboring RNA chaperone activity play diverse roles in seed germination and seedling growth of plants under abiotic stress conditions as well as in the presence of ABA.<br /> (© 2016 Scandinavian Plant Physiology Society.)

Details

Language :
English
ISSN :
1399-3054
Volume :
159
Issue :
1
Database :
MEDLINE
Journal :
Physiologia plantarum
Publication Type :
Academic Journal
Accession number :
27528428
Full Text :
https://doi.org/10.1111/ppl.12488