Back to Search
Start Over
Combination of Metabolomics with Cellular Assays Reveals New Biomarkers and Mechanistic Insights on Xenoestrogenic Exposures in MCF-7 Cells.
- Source :
-
Chemical research in toxicology [Chem Res Toxicol] 2017 Apr 17; Vol. 30 (4), pp. 883-892. Date of Electronic Publication: 2016 Aug 29. - Publication Year :
- 2017
-
Abstract
- The disruptive potential of xenoestrogens like bisphenol A (BPA) lies in their 17β-estradiol (E2)-like binding to estrogen receptors (ERs) followed by concomitant modulation of ER target gene expression. Unsurprisingly, most endocrine testing systems focus on the quantification of canonical transcripts or ER-sensitive reporters. However, only little information is available about the corresponding metabolomic changes in vitro. This knowledge gap becomes particularly relevant in the context of potential mixture effects, for example, as a consequence of coexposure to potentially estrogenically active pollutants (e.g., Cd <superscript>2+</superscript> ). Such effects are often difficult to dissect with molecular tools, especially with regard to potential physiological relevance. Metabolomic biomarkers are well-suited to address this latter aspect as they provide a comprehensive readout of whole-cell physiology. Applying a targeted metabolomics approach (FIA-MS/MS), this study looked for biomarkers indicative of xenoestrogenic exposure in MCF-7 cells. Cells were treated with E2 and BPA in the presence or absence of Cd <superscript>2+</superscript> . Statistical analysis revealed a total of 11 amino acids and phospholipids to be related to the compound's estrogenic potency. Co-exposure to Cd <superscript>2+</superscript> modulated the estrogenic profile. However, the corresponding changes were found to be moderate with cellular assays such as the E-screen failing to record any Cd <superscript>2+</superscript> -specific estrogenic effects. Overall, metabolomics analysis identified proline as the most prominent estrogenic biomarker. Its increase could clearly be related to estrogenic exposure and concomitant ERα-mediated induction of proliferation. Involvement of the latter was confirmed by siRNA-mediated knockdown studies as well as by receptor inhibition. Further, the underlying signaling was also found to involve the oncoprotein MYC. Taken together, this study provides insights into the underlying mechanisms of xenoestrogenic effects and exemplify the strength of the complementary use of metabolomics and cellular and molecular assays.
- Subjects :
- Benzhydryl Compounds chemistry
Benzhydryl Compounds toxicity
Cadmium chemistry
Colorimetry
Discriminant Analysis
Endocrine Disruptors chemistry
Estradiol chemistry
Estradiol toxicity
Estrogen Receptor alpha antagonists & inhibitors
Estrogen Receptor alpha genetics
Estrogen Receptor alpha metabolism
Genes, Reporter
Humans
MCF-7 Cells
Metabolome drug effects
Phenols chemistry
Phenols toxicity
Proline metabolism
Proto-Oncogene Proteins c-myc antagonists & inhibitors
Proto-Oncogene Proteins c-myc genetics
Proto-Oncogene Proteins c-myc metabolism
RNA Interference
RNA, Small Interfering metabolism
Tandem Mass Spectrometry
Biomarkers metabolism
Cell Proliferation drug effects
Endocrine Disruptors toxicity
Metabolomics
Subjects
Details
- Language :
- English
- ISSN :
- 1520-5010
- Volume :
- 30
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Chemical research in toxicology
- Publication Type :
- Academic Journal
- Accession number :
- 27514991
- Full Text :
- https://doi.org/10.1021/acs.chemrestox.6b00106