Back to Search
Start Over
Site Redistribution, Partial Frozen-in Defect Chemistry, and Electrical Properties of Ba1-x(Zr,Pr)O3-δ.
- Source :
-
Inorganic chemistry [Inorg Chem] 2016 Sep 06; Vol. 55 (17), pp. 8552-63. Date of Electronic Publication: 2016 Aug 10. - Publication Year :
- 2016
-
Abstract
- Changes in nominal composition of the perovskite (ABO3) solid solution Ba1-x(Zr,Pr)O3-δ and adjusted firing conditions at very high temperatures were used to induce structural changes involving site redistribution and frozen-in point defects, as revealed by Raman and photoluminescence spectroscopies. Complementary magnetic measurements allowed quantification of the reduced content of Pr. Weak dependence of oxygen stoichiometry with temperature was obtained by coulometric titration at temperatures below 1000 °C, consistent with a somewhat complex partial frozen-in defect chemistry. Electrical conductivity measurements combined with transport number and Seebeck coefficient measurements showed prevailing electronic transport and also indicated trends expected for partial frozen-in conditions. Nominal Ba deficiency and controlled firing at very high temperatures allows adjustment of structure and partial frozen-in defect chemistry, opening the way to engineer relevant properties for high-temperature electrochemical applications.
Details
- Language :
- English
- ISSN :
- 1520-510X
- Volume :
- 55
- Issue :
- 17
- Database :
- MEDLINE
- Journal :
- Inorganic chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 27509311
- Full Text :
- https://doi.org/10.1021/acs.inorgchem.6b01084