Back to Search Start Over

Biomechanical effects of maxillary expansion on a patient with cleft palate: A finite element analysis.

Authors :
Lee H
Nguyen A
Hong C
Hoang P
Pham J
Ting K
Source :
American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics [Am J Orthod Dentofacial Orthop] 2016 Aug; Vol. 150 (2), pp. 313-23.
Publication Year :
2016

Abstract

Introduction: The aims of this study were to evaluate the effects of rapid palatal expansion on the craniofacial skeleton of a patient with unilateral cleft lip and palate (UCLP) and to predict the points of force application for optimal expansion using a 3-dimensional finite element model.<br />Methods: A 3-dimensional finite element model of the craniofacial complex with UCLP was generated from spiral computed tomographic scans with imaging software (Mimics, version 13.1; Materialise, Leuven, Belgium). This model was imported into the finite element solver (version 12.0; ANSYS, Canonsburg, Pa) to evaluate transverse expansion forces from rapid palatal expansion. Finite element analysis was performed with transverse expansion to achieve 5 mm of anterolateral expansion of the collapsed minor segment to simulate correction of the anterior crossbite in a patient with UCLP.<br />Results: High-stress concentrations were observed at the body of the sphenoid, medial to the orbit, and at the inferior area of the zygomatic process of the maxilla. The craniofacial stress distribution was asymmetric, with higher stress levels on the cleft side. When forces were applied more anteriorly on the collapsed minor segment and more posteriorly on the major segment, there was greater expansion of the anterior region of the minor segment with minimal expansion of the major segment.<br />Conclusions: The transverse expansion forces from rapid palatal expansion are distributed to the 3 maxillary buttresses. Finite element analysis is an appropriate tool to study and predict the points of force application for better controlled expansion in patients with UCLP.<br /> (Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1097-6752
Volume :
150
Issue :
2
Database :
MEDLINE
Journal :
American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics
Publication Type :
Academic Journal
Accession number :
27476365
Full Text :
https://doi.org/10.1016/j.ajodo.2015.12.029