Back to Search Start Over

Metabolomic Profiling Identifies Novel Circulating Biomarkers of Mitochondrial Dysfunction Differentially Elevated in Heart Failure With Preserved Versus Reduced Ejection Fraction: Evidence for Shared Metabolic Impairments in Clinical Heart Failure.

Authors :
Hunter WG
Kelly JP
McGarrah RW 3rd
Khouri MG
Craig D
Haynes C
Ilkayeva O
Stevens RD
Bain JR
Muehlbauer MJ
Newgard CB
Felker GM
Hernandez AF
Velazquez EJ
Kraus WE
Shah SH
Source :
Journal of the American Heart Association [J Am Heart Assoc] 2016 Jul 29; Vol. 5 (8). Date of Electronic Publication: 2016 Jul 29.
Publication Year :
2016

Abstract

Background: Metabolic impairment is an important contributor to heart failure (HF) pathogenesis and progression. Dysregulated metabolic pathways remain poorly characterized in patients with HF and preserved ejection fraction (HFpEF). We sought to determine metabolic abnormalities in HFpEF and identify pathways differentially altered in HFpEF versus HF with reduced ejection fraction (HFrEF).<br />Methods and Results: We identified HFpEF cases, HFrEF controls, and no-HF controls from the CATHGEN study of sequential patients undergoing cardiac catheterization. HFpEF cases (N=282) were defined by left ventricular ejection fraction (LVEF) ≥45%, diastolic dysfunction grade ≥1, and history of HF; HFrEF controls (N=279) were defined similarly, except for having LVEF <45%. No-HF controls (N=191) had LVEF ≥45%, normal diastolic function, and no HF diagnosis. Targeted mass spectrometry and enzymatic assays were used to quantify 63 metabolites in fasting plasma. Principal components analysis reduced the 63 metabolites to uncorrelated factors, which were compared across groups using ANCOVA. In basic and fully adjusted models, long-chain acylcarnitine factor levels differed significantly across groups (P<0.0001) and were greater in HFrEF than HFpEF (P=0.0004), both of which were greater than no-HF controls. We confirmed these findings in sensitivity analyses using stricter inclusion criteria, alternative LVEF thresholds, and adjustment for insulin resistance.<br />Conclusions: We identified novel circulating metabolites reflecting impaired or dysregulated fatty acid oxidation that are independently associated with HF and differentially elevated in HFpEF and HFrEF. These results elucidate a specific metabolic pathway in HF and suggest a shared metabolic mechanism in HF along the LVEF spectrum.<br /> (© 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.)

Details

Language :
English
ISSN :
2047-9980
Volume :
5
Issue :
8
Database :
MEDLINE
Journal :
Journal of the American Heart Association
Publication Type :
Academic Journal
Accession number :
27473038
Full Text :
https://doi.org/10.1161/JAHA.115.003190