Back to Search
Start Over
Revisiting sulfur H-bonds in proteins: The example of peroxiredoxin AhpE.
- Source :
-
Scientific reports [Sci Rep] 2016 Jul 29; Vol. 6, pp. 30369. Date of Electronic Publication: 2016 Jul 29. - Publication Year :
- 2016
-
Abstract
- In many established methods, identification of hydrogen bonds (H-bonds) is primarily based on pairwise comparison of distances between atoms. These methods often give rise to systematic errors when sulfur is involved. A more accurate method is the non-covalent interaction index, which determines the strength of the H-bonds based on the associated electron density and its gradient. We applied the NCI index on the active site of a single-cysteine peroxiredoxin. We found a different sulfur hydrogen-bonding network to that typically found by established methods, and we propose a more accurate equation for determining sulfur H-bonds based on geometrical criteria. This new algorithm will be implemented in the next release of the widely-used CHARMM program (version 41b), and will be particularly useful for analyzing water molecule-mediated H-bonds involving different atom types. Furthermore, based on the identification of the weakest sulfur-water H-bond, the location of hydrogen peroxide for the nucleophilic attack by the cysteine sulfur can be predicted. In general, current methods to determine H-bonds will need to be reevaluated, thereby leading to better understanding of the catalytic mechanisms in which sulfur chemistry is involved.
- Subjects :
- Bacterial Proteins chemistry
Catalysis
Catalytic Domain
Cysteine chemistry
Hydrocarbons chemistry
Hydrogen Peroxide chemistry
Models, Molecular
Molecular Dynamics Simulation
Mycobacterium tuberculosis chemistry
Oxygen chemistry
Software
Sulfhydryl Compounds
Sulfur chemistry
Water chemistry
Hydrogen Bonding
Peroxiredoxins chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 6
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 27468924
- Full Text :
- https://doi.org/10.1038/srep30369