Back to Search Start Over

Dry and wet approaches for genome-wide functional annotation of conventional and unconventional transcriptional activators.

Authors :
Levati E
Sartini S
Ottonello S
Montanini B
Source :
Computational and structural biotechnology journal [Comput Struct Biotechnol J] 2016 Jun 29; Vol. 14, pp. 262-70. Date of Electronic Publication: 2016 Jun 29 (Print Publication: 2016).
Publication Year :
2016

Abstract

Transcription factors (TFs) are master gene products that regulate gene expression in response to a variety of stimuli. They interact with DNA in a sequence-specific manner using a variety of DNA-binding domain (DBD) modules. This allows to properly position their second domain, called "effector domain", to directly or indirectly recruit positively or negatively acting co-regulators including chromatin modifiers, thus modulating preinitiation complex formation as well as transcription elongation. At variance with the DBDs, which are comprised of well-defined and easily recognizable DNA binding motifs, effector domains are usually much less conserved and thus considerably more difficult to predict. Also not so easy to identify are the DNA-binding sites of TFs, especially on a genome-wide basis and in the case of overlapping binding regions. Another emerging issue, with many potential regulatory implications, is that of so-called "moonlighting" transcription factors, i.e., proteins with an annotated function unrelated to transcription and lacking any recognizable DBD or effector domain, that play a role in gene regulation as their second job. Starting from bioinformatic and experimental high-throughput tools for an unbiased, genome-wide identification and functional characterization of TFs (especially transcriptional activators), we describe both established (and usually well affordable) as well as newly developed platforms for DNA-binding site identification. Selected combinations of these search tools, some of which rely on next-generation sequencing approaches, allow delineating the entire repertoire of TFs and unconventional regulators encoded by the any sequenced genome.

Details

Language :
English
ISSN :
2001-0370
Volume :
14
Database :
MEDLINE
Journal :
Computational and structural biotechnology journal
Publication Type :
Academic Journal
Accession number :
27453771
Full Text :
https://doi.org/10.1016/j.csbj.2016.06.004