Back to Search
Start Over
Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium-sensing receptor in the intervertebral disc.
- Source :
-
European cells & materials [Eur Cell Mater] 2016 Jul 25; Vol. 32, pp. 137-51. Date of Electronic Publication: 2016 Jul 25. - Publication Year :
- 2016
-
Abstract
- The cartilaginous endplates (CEPs) are thin layers of hyaline cartilage found adjacent to intervertebral discs (IVDs). In addition to providing structural support, CEPs regulate nutrient and metabolic exchange in the disc. In IVD pathogenesis, CEP undergoes degeneration and calcification, compromising nutrient availability and disc cell metabolism. The mechanism(s) underlying the biochemical changes of CEP in disc degeneration are currently unknown. Since calcification is often observed in later stages of IVD degeneration, we hypothesised that elevations in free calcium (Ca2+) impair CEP homeostasis. Indeed, our results demonstrated that the Ca2+ content was consistently higher in human CEP tissue with grade of disc degeneration. Increasing the levels of Ca2+ resulted in decreases in the secretion and accumulation of collagens type I, II and proteoglycan in cultured human CEP cells. Ca2+ exerted its effects on CEP matrix protein synthesis through activation of the extracellular calcium-sensing receptor (CaSR); however, aggrecan content was also affected independent of CaSR activation as increases in Ca2+ directly enhanced the activity of aggrecanases. Finally, supplementing Ca2+ in our IVD organ cultures was sufficient to induce degeneration and increase the mineralisation of CEP, and decrease the diffusion of glucose into the disc. Thus, any attempt to induce anabolic repair of the disc without addressing Ca2+ may be impaired, as the increased metabolic demand of IVD cells would be compromised by decreases in the permeability of the CEP.
- Subjects :
- Aggrecans metabolism
Animals
Calcinosis metabolism
Calcinosis pathology
Cattle
Chondrocytes metabolism
Collagen metabolism
Diffusion
Extracellular Matrix metabolism
Gene Knockdown Techniques
Glucose metabolism
Humans
Intervertebral Disc Degeneration metabolism
Organ Culture Techniques
Proteoglycans metabolism
RNA, Small Interfering metabolism
Calcium metabolism
Cartilage metabolism
Cartilage pathology
Intervertebral Disc metabolism
Intervertebral Disc pathology
Intervertebral Disc Degeneration pathology
Receptors, Calcium-Sensing metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1473-2262
- Volume :
- 32
- Database :
- MEDLINE
- Journal :
- European cells & materials
- Publication Type :
- Academic Journal
- Accession number :
- 27452962
- Full Text :
- https://doi.org/10.22203/ecm.v032a09