Back to Search Start Over

Bond strength of epoxy resin-based root canal sealer to human root dentin irradiated with Er,Cr:YSGG laser.

Authors :
Franceschini KA
Silva-Sousa YT
Lopes FC
Pereira RD
Palma-Dibb RG
de Sousa-Neto MD
Source :
Lasers in surgery and medicine [Lasers Surg Med] 2016 Dec; Vol. 48 (10), pp. 985-994. Date of Electronic Publication: 2016 Jul 18.
Publication Year :
2016

Abstract

Objective: The aim was to evaluate the influence of Er,Cr:YSGG laser irradiation associated with different final irrigation protocols on the bond strength of epoxy resin-based root canal sealer to root dentin, on the dentin/filling material interface and in the temperature variation during irradiation.<br />Methodology: Ninety-six maxillary canines were prepared with K3 rotary system up to #45/0.02 instrument, irrigating with distilled water between files. The specimens were randomly assigned to three groups-final irrigation (distilled water, 1% NaOCl, and 17% EDTAC) and four subgroups (n = 8)-laser parameters (non-irradiated, 2 W/20 Hz, 3 W/20 Hz, and 4 W/20 Hz). During irradiation, the temperatures were measured on the outer root dentin wall in the three thirds, and root apex. Canals were filled with lateral condensation of AHPlus sealer and gutta-percha cones. Two slices from each third were submitted to a push-out test in Instron machine and the failure mode was analyzed. One slice from each third was analyzed by confocal laser microscopy to evaluate the percentage of the perimeter of the root canal cross-section with sealer tags and depth of tags. Data were analyzed by ANOVA, Kruskal-Wallis, and Tukey's tests (P < 0.05).<br />Results: Er,Cr:YSGG laser irradiation increased sealer bond strength to dentin, regardless of the final irrigation. The highest values were obtained for 3 W (4.02 ± 1.32) and 4 W (4.18 ± 0.98) powers and different from the non-irradiated group (2.64 ± 0.58) (P < 0.05). The 2 W irradiation produced similar results to 3 W and 4 W when associated with 17% EDTA. Final irrigation with 17% EDTAC provided higher bond strength (4.01 ± 1.02) compared with distilled water (3.11 ± 1.09) and 1% NaOCl (3.47 ± 1.18) (P < 0.05). The cervical third (4.01 ± 1.21) presented significantly higher bond strength than the apical third (3.04 ± 0.89). There was a greater percentage of adhesive and mixed failure. In the groups irradiated with 3 W [21.1 (14.1-27.7)] and 4 W [17.8 (11.9-23.7)], a greater depth of filling material tags was observed compared with the non-irradiated group [12.9 (9.0-20.0)]. The greatest percentage of canal perimeter with sealer tags was observed in the irradiated groups, with no difference among them (P > 0.05). The temperature rise was proportional to the increase of laser power.<br />Conclusions: Er,Cr:YSGG laser irradiation increased the bond strength of an epoxy resin-based sealer to root dentin, with greater formation of sealer tags for all tested powers, especially when combined with 17% EDTAC final irrigation; temperature rise during irradiation remained below the critical threshold biologically accepted. Lasers Surg. Med. 48:985-994, 2016. © 2016 Wiley Periodicals, Inc.<br /> (© 2016 Wiley Periodicals, Inc.)

Details

Language :
English
ISSN :
1096-9101
Volume :
48
Issue :
10
Database :
MEDLINE
Journal :
Lasers in surgery and medicine
Publication Type :
Academic Journal
Accession number :
27425810
Full Text :
https://doi.org/10.1002/lsm.22496