Back to Search
Start Over
Systematic determination of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in outdoor jackets.
- Source :
-
Chemosphere [Chemosphere] 2016 Oct; Vol. 160, pp. 173-80. Date of Electronic Publication: 2016 Jul 01. - Publication Year :
- 2016
-
Abstract
- Sixteen outdoor jackets were purchased in 2011/12 and analyzed for 23 different perfluoroalkyl and polyfluoroalkyl substances (PFASs). The jackets were selected based on their origin of production, price, market, and textile, such as polyester, nylon, polyamide, and content of poly(tetrafluoroethylene) membranes. Two robust analytical methods based on high pressure liquid chromatography combined with tandem mass spectrometry, as well as two liquid extractions, were developed enabling the analysis of PFASs with widely different physico-chemical properties. The jackets were found to contain PFASs in a range between 0.03 and 719 μg/m(2). Perfluorooctanoic acid (PFOA) was omnipresent (0.02-171 μg/m(2)), although at lower concentrations compared to the precursors of perfluoroalkyl carboxylic acids (PFCAs), namely fluorotelomer alcohols (FTOHs) (<0.001-698 μg/m(2)). Perfluoroalkane sulfonic acids and their putative precursors, in particular perfluoroalkane sulfonamides, were detected much less frequently at concentrations up to 5 μg/m(2). To determine the effect of the volatility of FTOHs, four selected jackets were stored in a sealed bag in the dark at room temperature and re-analyzed after 3.5 years. Only 10%-20% of the initial concentration of 8:2-FTOH and 20%-50% of 10:2-FTOH were found, whereas the concentrations of PFOA and perfluorodecanoic acid increased significantly. This supports the hypothesis that PFAS concentrations in textiles are also strongly dependent on age, and conditions of transport and storage.<br /> (Copyright © 2016 Elsevier Ltd. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-1298
- Volume :
- 160
- Database :
- MEDLINE
- Journal :
- Chemosphere
- Publication Type :
- Academic Journal
- Accession number :
- 27376856
- Full Text :
- https://doi.org/10.1016/j.chemosphere.2016.06.043