Back to Search
Start Over
Magnetic field-assisted SPR biosensor based on carboxyl-functionalized graphene oxide sensing film and Fe3O4-hollow gold nanohybrids probe.
- Source :
-
Biosensors & bioelectronics [Biosens Bioelectron] 2016 Dec 15; Vol. 86, pp. 95-101. Date of Electronic Publication: 2016 Jun 14. - Publication Year :
- 2016
-
Abstract
- A novel surface plasmon resonance (SPR) biosensor, coupled with the magnetic bioseparation technique, was constructed and used to the determination of human IgG. Carboxyl-functionalized graphene oxide (cGO) sheet was employed as the sensing film for the efficient immobilization of capture antibody (Ab1). Nanoconjugates (FHAb2), obtained by binding detection antibody (Ab2) to the nanohybrids containing Fe3O4 nanoparticles (Fe3O4 NPs) and hollow gold sphere nanoparticles (HGNPs), were used to specifically collect the target analytes from sample solutions and serve as labels. Owing to the notable plasmonic fields spreading over inner and outer surfaces, HGNPs played key roles in amplifying the SPR response signals originating from the dielectric changes on the sensing films during the binding of Ab1 and human IgG-Ab2FH complexes. In addition, FHAb2 were also used as "vehicles" for the rapid delivery of the separated and enriched target analytes from sample solutions to the sensor surface via an external magnet. In the present method, taking advantages of the magnetic field-driven mass transfer and the significant signal amplification effect of FHAb2, the separation and analysis of human IgG in serum samples are quite effective and sensitive. The limit of detection was 1.88ngmL(-1), which is about 260-fold lower than that obtained by routine SPR biosensors with sandwich assay.<br /> (Copyright © 2016 Elsevier B.V. All rights reserved.)
- Subjects :
- Carbon Dioxide chemistry
Equipment Design
Equipment Failure Analysis
Gold chemistry
Humans
Immunoglobulin G immunology
Magnetic Fields
Magnetite Nanoparticles radiation effects
Magnetite Nanoparticles ultrastructure
Membranes, Artificial
Molecular Probe Techniques instrumentation
Molecular Probes chemistry
Molecular Probes radiation effects
Nanocomposites chemistry
Nanocomposites radiation effects
Nanocomposites ultrastructure
Nanopores ultrastructure
Reproducibility of Results
Sensitivity and Specificity
Graphite chemistry
Immunoassay instrumentation
Immunoglobulin G blood
Immunomagnetic Separation instrumentation
Magnetite Nanoparticles chemistry
Surface Plasmon Resonance instrumentation
Subjects
Details
- Language :
- English
- ISSN :
- 1873-4235
- Volume :
- 86
- Database :
- MEDLINE
- Journal :
- Biosensors & bioelectronics
- Publication Type :
- Academic Journal
- Accession number :
- 27336617
- Full Text :
- https://doi.org/10.1016/j.bios.2016.06.035