Back to Search Start Over

A 13C-n.m.r. investigation of the ionizations within an inhibitor--alpha-chymotrypsin complex. Evidence that both alpha-chymotrypsin and trypsin stabilize a hemiketal oxyanion by similar mechanisms.

Authors :
Finucane MD
Hudson EA
Malthouse JP
Source :
The Biochemical journal [Biochem J] 1989 Mar 15; Vol. 258 (3), pp. 853-9.
Publication Year :
1989

Abstract

13C-n.m.r. was used to investigate the structure of the inhibitor enzyme complex formed when alpha-chymotrypsin is alkylated by L-1-chloro-4-phenyl-3-tosylamido-[2-13C]butan-2-one. Two signals are detected. The one at 204.82 +/- 0.11 p.p.m. does not titrate from pH 3 to 9 and is assigned to alkylated methionine-192. The second signal titrates from 99.08 p.p.m. to 103.44 p.p.m. with pKa 8.67. This signal is assigned to a tetrahedral adduct formed between the hydroxy group of serine-195 and the inhibitor. The titration shift of the tetrahedral adduct is ascribed to the ionization of the hemiketal hydroxy group. It is proposed that the resulting oxyanion is stabilized by interaction with the imidazolium ion of histidine-57. It is argued that this interaction must raise the pKa of at least 70% of histidine-57 to greater than 11. On denaturation/autolysis of the inhibitor-enzyme complex neither of the signals associated with the intact complex is detected, but a new signal is observed that titrates from 203.52 p.p.m. to 206.08 p.p.m. with pKa = 5.27. This titration shift is assigned to the ionization of the imidazolium ion of alkylated histidine, confirming that the inhibitor has alkylated histidine-57. The significance of these results for the catalytic mechanism of the serine proteinases is discussed.

Details

Language :
English
ISSN :
0264-6021
Volume :
258
Issue :
3
Database :
MEDLINE
Journal :
The Biochemical journal
Publication Type :
Academic Journal
Accession number :
2730570
Full Text :
https://doi.org/10.1042/bj2580853