Back to Search
Start Over
Interleukin-8, CXCL1, and MicroRNA miR-146a Responses to Probiotic Escherichia coli Nissle 1917 and Enteropathogenic E. coli in Human Intestinal Epithelial T84 and Monocytic THP-1 Cells after Apical or Basolateral Infection.
- Source :
-
Infection and immunity [Infect Immun] 2016 Aug 19; Vol. 84 (9), pp. 2482-92. Date of Electronic Publication: 2016 Aug 19 (Print Publication: 2016). - Publication Year :
- 2016
-
Abstract
- Bacterium-host interactions in the gut proceed via directly contacted epithelial cells, the host's immune system, and a plethora of bacterial factors. Here we characterized and compared exemplary cytokine and microRNA (miRNA) responses of human epithelial and THP-1 cells toward the prototype enteropathogenic Escherichia coli (EPEC) strain E2348/69 (O127:H6) and the probiotic strain Escherichia coli Nissle 1917 (EcN) (O6:K5:H1). Human T84 and THP-1 cells were used as cell culture-based model systems for epithelial and monocytic cells. Polarized T84 monolayers were infected apically or basolaterally. Bacterial challenges from the basolateral side resulted in more pronounced cytokine and miRNA responses than those observed for apical side infections. Interestingly, the probiotic EcN also caused a pronounced transcriptional increase of proinflammatory CXCL1 and interleukin-8 (IL-8) levels when human T84 epithelial cells were infected from the basolateral side. miR-146a, which is known to regulate adaptor molecules in Toll-like receptor (TLR)/NF-κB signaling, was found to be differentially regulated in THP-1 cells between probiotic and pathogenic bacteria. To assess the roles of flagella and flagellin, we employed several flagellin mutants of EcN. EcN flagellin mutants induced reduced IL-8 as well as CXCL1 responses in T84 cells, suggesting that flagellin is an inducer of this cytokine response. Following infection with an EPEC type 3 secretion system (T3SS) mutant, we observed increased IL-8 and CXCL1 transcription in T84 and THP-1 cells compared to that in wild-type EPEC. This study emphasizes the differential induction of miR-146a by pathogenic and probiotic E. coli strains in epithelial and immune cells as well as a loss of probiotic properties in EcN interacting with cells from the basolateral side.<br /> (Copyright © 2016, American Society for Microbiology. All Rights Reserved.)
- Subjects :
- Cell Line
Epithelial Cells metabolism
Epithelial Cells microbiology
Escherichia coli Proteins metabolism
Flagella metabolism
Flagellin metabolism
Humans
Intestinal Mucosa metabolism
Intestinal Mucosa microbiology
Intestines microbiology
Monocytes microbiology
NF-kappa B metabolism
Chemokine CXCL1 metabolism
Enteropathogenic Escherichia coli metabolism
Escherichia coli metabolism
Interleukin-8 metabolism
MicroRNAs metabolism
Probiotics metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1098-5522
- Volume :
- 84
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- Infection and immunity
- Publication Type :
- Academic Journal
- Accession number :
- 27297392
- Full Text :
- https://doi.org/10.1128/IAI.00402-16